Skip to main content

Image classification using tensorflow.

Project description

Image classification (not object detection) using tensorflow.

Based on example code located here:

https://www.tensorflow.org/hub/tutorials/image_retraining

Installation

  • install virtual environment:

    virtualenv -p /usr/bin/python3.7 venv
  • install tensorflow (1.x or 2.x works)

    • with GPU (1.x):

      ./venv/bin/pip install "tensorflow-gpu<2.0.0"
    • with GPU (2.x):

      ./venv/bin/pip install "tensorflow-gpu>=2.0.0"
    • CPU only (1.x):

      ./venv/bin/pip install "tensorflow<2.0.0"
    • CPU only (2.x):

      ./venv/bin/pip install "tensorflow>=2.0.0"
  • install library

    • via pip:

      ./venv/bin/pip install wai.tfimageclass
    • from source (from within the directory containing the setup.py script):

      ./venv/bin/pip install .

Usage

All scripts support –help option to list all available options.

Train

  • For training, use module wai.tfimageclass.train.retrain or console script tfic-retrain

  • For evaluating a built model, use module wai.tfimageclass.train.stats or console script tfic-stats

Training data

All the data for building the model must be located in a single directory, with each sub-directory representing a label. For instance for building a model for distinguishing flowers (daisy, dandelion, roses, sunflowers, tulip), the data directory looks like this:

|
+- flowers
   |
   +- daisy
   |
   +- dandelion
   |
   +- roses
   |
   +- sunflowers
   |
   +- tulip

Predict

Once you have built a model, you can use it as follows:

  • For making predictions for a single image, use module wai.tfimageclass.predict.label_image or console script tfic-labelimage

  • For polling images in a directory and making continous predictions with CSV companion files, use module wai.tfimageclass.predict.poll or console script tfic-poll

Changelog

0.0.12 (2021-04-14)

  • poll.py now handles keyboard interrupts properly

  • stats.py can use tflite model now as well, using –graph_type tflite

0.0.11 (2021-01-26)

  • poll.py can output predictions now in: csv, xml, json

  • label_image.py can output predictions to stdout or a file and in: plaintext (current), csv, xml, json

0.0.10 (2021-01-25)

  • removed ability to split images into grid from poll.py

  • added tfic-export tool to export saved model folder to Tensorflow lite model

  • added support for using tflite models to tfic-poll and tfic-labelimage

0.0.9 (2020-10-21)

  • poll.py accidentally redefined variable for resetting the session.

0.0.8 (2020-10-21)

  • poll.py now re-initializes the Tensorflow session every X processed images to avoid out of memory problems (–reset_session option).

0.0.7 (2020-09-22)

  • poll.py now outputs the top-X predictions with the correct labels/probability

0.0.6 (2020-09-02)

  • poll.py in non-continuous mode now works as expected (didn’t scan input directory previously)

0.0.5 (2020-08-06)

  • label_image.py, poll.py and stats.py can now re-use the info JSON file generated by retrain.py to simplify command-line parameters (input_height, input_width, input_layer, output_layer, labels)

  • improved help output of argument parsers: outputting description, command-line and default values now

0.0.4 (2020-08-04)

  • poll.py now has new –continuous flag to allow for continuous or single batch predictions

0.0.3 (2020-07-28)

  • poll.py: added ability to split images into grid of equal sized images, obtaining a classification for each sub-image.

  • fixed license: now uses Apache 2.0 instead of MIT

0.0.2 (2019-11-14)

  • added missing MANIFEST.in

0.0.1 (2019-11-01)

  • initial release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wai.tfimageclass-0.0.12.tar.gz (32.3 kB view details)

Uploaded Source

File details

Details for the file wai.tfimageclass-0.0.12.tar.gz.

File metadata

  • Download URL: wai.tfimageclass-0.0.12.tar.gz
  • Upload date:
  • Size: 32.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.5

File hashes

Hashes for wai.tfimageclass-0.0.12.tar.gz
Algorithm Hash digest
SHA256 6f17964c81d53c786e29636bdeb178eb05758bfd7aa8fe1b7eac16ae288429e3
MD5 39b56890988306b46a2f1a07a124d999
BLAKE2b-256 d8887ae01a8de17fe68462037ed449dd8004da372a64c0291e3cd80337cef937

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page