Skip to main content

Utilities to use allennlp with wandb

Project description

wandb-allennlp

Utilities and boilerplate code which allows using Weights & Biases to tune the hypereparameters for any AllenNLP model without a single line of extra code!

Features

  1. Log a single run or a hyperparameter search sweep without any extra code, just using configuration files.

  2. Use Weights & Biases bayesian hyperparameter search engine + hyperband in any AllenNLP project.

  3. Works with any AllenNLP version > 0.9 (including the latest 1.0.0).

  4. (Coming Soon) Running parallel bayesian hyperparameter search for any AllenNLP model on a slurm managed cluster using Weights & Biases. Again without a single line of extra code.

  5. (Coming Soon) Support for parameter tying to set values for interdependent hyperparameters like hidden dimension for consecutive layers.

Status

Tests

Quick start

Installation

pip install wandb-allennlp

Log a single run

  1. Create your model using AllenNLP along with a training configuration file as you would normally do.

  2. Add a trainer callback in your config file. Use one of the following based on your AllenNLP version:

For allennlp v0.9:

...,

trainer: {
    type: 'callback',
    callbacks: [
      ...,

      {
        type: 'log_metrics_to_wandb',
      },

      ...,
    ],
    ...,
}
...
...

For allennlp v1.x :

...

trainer: {
    epoch_callbacks: [
      ...,

      {
        type: 'log_metrics_to_wandb',
      },

      ...,
    ],
    ...,
}
...
...
  1. Execute the following command instead of allennlp train:
wandb_allennlp --subcommand=train --config_file=model_configs/my_config.jsonnet --include-package=package_with_my_registered_classes --include-package=another_package --wandb_run_name=my_first_run --wandb_tags=any,set,of,non-unique,tags,that,identify,the,run,without,spaces

Hyperparameter Search

  1. Create your model using AllenNLP along with a training configuration file as you would normally do. For example:
{
    "dataset_reader": {
        "type": "snli",
        "token_indexers": {
            "tokens": {
                "type": "single_id",
                "lowercase_tokens": true
            }
        }
    },
  "train_data_path": std.extVar("DATA_PATH")+"/snli_1.0_test/snli_1.0_train.jsonl",
  "validation_data_path": std.extVar("DATA_PATH")+ "/snli_1.0_test/snli_1.0_dev.jsonl",
    "model": {
            "type": "nli-seq2vec",
	    "input_size": 50,
            "hidden_size": 50,
            "rnn": "LSTM",
            "num_layers": 1,
            "bidirectional": true,
	    "projection_size": 50,
            "debug": false

    },
    "iterator": {
        "type": "bucket",
        "sorting_keys": [["premise", "num_tokens"],
                         ["hypothesis", "num_tokens"]],
        "batch_size": 32
    },
    "trainer": {
		"type":"callback",
		"callbacks":[
			{
				"type": "validate"
			},
			{
				"type": "checkpoint",
				"checkpointer":{
					"num_serialized_models_to_keep":1
				}
			},
			{
				"type": "track_metrics",
				"patience": 10,
				"validation_metric": "+accuracy"
			},
			{
				"type": "log_metrics_to_wandb" ###### Don't forget to include this callback.
			}
		],
		"optimizer": {
			"type": "adam",
			"lr":0.01,
			"weight_decay": 0.01
		},
		"cuda_device": -1,
		"num_epochs": 10,
		"shuffle": true
	}
}
  1. Create a sweep configuration file and generate a sweep on the wandb server. For example:
name: nli_lstm
program: wandb_allennlp
method: bayes
## Do not for get to use the command keyword to specify the following command structure
command:
  - ${program} #omit the interpreter as we use allennlp train command directly
  - "--subcommand=train"
  - "--include-package=models" # add all packages containing your registered classes here
  - "--config_file=configs/lstm_nli.jsonnet"
  - ${args}
metric:
  name: best_validation_accuracy
  goal: maximize
parameters:
  # hyperparameters start with overrides
  # Ranges
  model.input_size:
    min: 100
    max: 500
    distribution: q_uniform
  model.hidden_size:
    min: 100
    max: 500
    distribution: q_uniform
  model.projection_size:
    min: 50
    max: 1000
    distribution: q_uniform
  model.num_layers:
    values: [1,2,3]
  model.bidirectional:
    value: "true"
  trainer.optimizer.lr:
    min: -7.0
    max: 0
    distribution: log_uniform
  trainer.optimizer.weight_decay:
    min: -12.0
    max: -5.0
    distribution: log_uniform
  model.type:
    value: nli-lstm
  1. Set the necessary environment variables.
export DATA_DIR=./data
  1. Start the search agents.
wandb agent <sweep_id>

For detailed instructions and example see this tutorial. For an example using allennlp-models see the examples directory.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for wandb-allennlp, version 0.2.0
Filename, size File type Python version Upload date Hashes
Filename, size wandb_allennlp-0.2.0-py3-none-any.whl (11.4 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size wandb_allennlp-0.2.0.tar.gz (10.7 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page