Skip to main content

A set of functions to ease working with Warp 10

Project description

Introduction

The PyWarp module provides functions which ease the interaction with the Warp 10 Time Series Platform.

The functions it provides can be used to fetch data from a Warp 10 instance into a Pandas dataframe or a Spark dataframe. A function is also provided for loading data from HFiles into a Spark dataframe.

A function also allows the conversion of native Warp 10 wrappers into a Pandas dataframe.

An exec function allows the execution of WarpScript on a Warp 10 instance and the retrieval of the result.

Installation

pip3 install warp10-pywarp

Installation from source

In this folder run the command:

pip3 install -e .

Fetching data options

Data points in the Warp 10 platform follow a Geo Time Series data model (geo location information is optional).

The PyWarp library provides various functions to fetch and represent these data points using Pandas dataframes, or Spark dataframes:

Pandas integration:

  • pywarp.fetch: returns a single dataframe where each row represents a single data point.
  • pywarp.sfetch: returns a list of dataframes, with each dataframe representing a distinct (geo) time series.
  • pywarp.ffetch: returns a single dataframe, resulting from the fusion of multiple (geo) time series dataframes.

Spark integration:

  • pywarp.spark.fetch: reads wrappers directly from a Warp 10 instance and loads them into a Spark dataframe.
  • pywarp.spark.hfileread: reads data from HFiles and loads the extracted wrappers into a Spark dataframe.
  • pywarp.spark.wrappers2df: converts a dataframe containing wrappers into a dataframe of data points.

WarpScript integration:

  • pywarp.exec: outputs the parsed JSON result of a WarpScript query.

A notebook example for each dataframe schema option is provided in test/.

Data Frame Schemas

1. Data Point Stream Data Frame

Returned by pywarp.fetch and pywarp.spark.wrappers2df, this format streams data points within a single Pandas dataframe, where each row represents a distinct data point.

Column Name Data Type Description Optional
classname str Classname of the series the data point belongs to No
labels dict Labels of the series the data point belongs to No
attributes dict Attributes of the series the data point belongs to No
ts int Timestamp of the data point in time units since Epoch No
lat float Latitude of the data point No
lon float Longitude of the data point No
elev int Elevation of the data point No
l_value int LONG value of the data point No
d_value float DOUBLE value of the data point No
b_value bool BOOLEAN value of data point No
s_value str STRING value of data point No
bin_value binary BYTES value of data point No

2. GTS Data Frame List

Returned by pywarp.sfetch, this format gives a list of individual Pandas dataframes, each representing a unique Geo Time Series.

Column Name Data Type Description Optional
ts or index int Timestamp in time units since Epoch No
lat float Latitude Yes
lon float Longitude Yes
elev int Elevation Yes
<classname> various Value No

Each DataFrame's .attrs dict contains:

  • warp10classname: Classname of the Geo Time Series (str).
  • warp10labels: Labels associated with the time series (dict).
  • warp10attributes: Attributes of the time series (dict).

3. Fused GTS Data Frames

Returned by pywarp.ffetch, this format amalgamates data from all fetched Geo Time Series into columns of a single Pandas dataframe.

Column Name/Prefix Data Type Description Optional
index int Timestamp in time units since Epoch No
l:<label key> str One column for each unique label key Yes
a:<attribute key> str One column for each unique attribute key Yes
lat:<classname> float Latitude, one column for each unique classname Yes
lon:<classname> float Longitude, one column for each unique classname Yes
elev:<classname> int Elevation, one column for each unique classname Yes
val:<classname> various Value, one column for each unique classname No

4. WarpScript JSON Output

pywarp.exec returns the parsed JSON output of a WarpScript query obtained against the Warp 10 /exec endpoint.

This is the most flexible way to retrieve data in a customizable format.

Examples

Reading data from a Warp 10 instance

See also: notebook examples.

import pywarp

df = pywarp.fetch('https://HOST:PORT/api/v0/fetch', 'TOKEN', 'SELECTOR{}', 'now', -100)

# Or using another dataframe schema:
# df = pywarp.sfetch('https://HOST:PORT/api/v0/fetch', 'TOKEN', 'SELECTOR{}', 'now', -100, indexedByTimestamp=True)
# df = pywarp.ffetch('https://HOST:PORT/api/v0/fetch', 'TOKEN', 'SELECTOR{}', 'now', -100, indexedByTimestamp=True)

print(df)

Reading data from a Warp 10 instance via Spark

import pywarp.spark

from pyspark.sql import SparkSession
from pyspark.sql import SQLContext

builder = SparkSession.builder.appName("PyWarp Test")

spark = builder.getOrCreate()
sc = spark.sparkContext

sqlContext = SQLContext(sc)

df = pywarp.spark.fetch(sc, 'https://HOST:PORT/api/v0/fetch', 'TOKEN', 'SELECTOR{}', 'now', -1440)
df = pywarp.spark.wrapper2df(sc, df, 'wrapper')
df.show()

Spark jobs making use of the HFStore extension must be launched using:

spark-submit --packages io.warp10:warp10-spark:3.0.2,io.senx:warp10-ext-hfstore:2.0.0 \
  --repositories https://maven.senx.io/repository/senx-public \
  --properties-file spark.conf \
  --files warp10.conf

where spark.conf contains the following definitions:

##
## Executor specific options
##

spark.executor.extraJavaOptions=-Dwarp10.config=warp10.conf -Ddisable.logging=true 

##
## Driver specific options
##

spark.driver.extraJavaOptions=-Dwarp10.config=warp10.conf -Ddisable.logging=true 

and the warp10.conf file contains a minima:

##
## Use microseconds as the time unit
##
warp.timeunits=us

##
## Load the Spark extension
##
warpscript.extensions=io.warp10.spark.SparkWarpScriptExtension

##
## Load the Debug extension so STDOUT is available
##
warpscript.extension.debug=io.warp10.script.ext.debug.DebugWarpScriptExtension

Alternatively if you do not want to use spark-submit, you can add the following in your script between the line builder = .... and spark = builder.getOrCreate()

conf = {}
conf['spark.master'] = 'local'
conf['spark.submit.deployMode'] = 'client'
conf['spark.executor.instances'] = '1'
conf['spark.executor.cores'] = '2'
conf['spark.driver.memory'] = '1g'
conf['spark.executor.memory'] = '1g'
conf['spark.executor.extraJavaOptions'] = '-Dwarp10.config=warp10.conf -Ddisable.logging=true'
conf['spark.driver.extraJavaOptions'] = '-Dwarp10.config=warp10.conf -Ddisable.logging=true'
conf['spark.driver.bindAddress'] = '0.0.0.0'
conf['spark.jars.packages'] = 'io.warp10:warp10-spark:3.0.2,io.senx:warp10-ext-hfstore:2.0.0'
conf['spark.jars.repositories'] = 'https://maven.senx.io/senx-public'
conf['spark.files'] = 'warp10.conf'

for (k,v) in conf.items():
  builder = builder.config(key=k,value=v)

and simply launch it using python3.

Reading data from HFiles in Spark

import pywarp.spark

from pyspark.sql import SparkSession
from pyspark.sql import SQLContext

spark = SparkSession.builder.appName("PyWarp Test").getOrCreate()
sc = spark.sparkContext

sqlContext = SQLContext(sc)

df = pywarp.spark.hfileread(sc, '/path/to/file.hfile', selector='SELECTOR{}', end=1081244481160.000, start=1081244472361.000)

df = pywarp.spark.wrapper2df(sc, df, 'wrapper')
df.show(n=1000,truncate=False)

Executing WarpScript on a Warp 10 instance

import pywarp

x = pywarp.exec('https://sandbox.senx.io/api/v0/exec',
"""
REV REV REV "UTF-8" ->BYTES 42 42.0 F 6 ->LIST
#->PICKLE ->B64
""",
False # Set to true if your code returns base64 encoded pickled content (decomment the line that uses ->PICKLE above)
)

print(x)

Executing WarpScript in Spark

import pywarp

spark = SparkSession.builder.appName("PyWarp Test").getOrCreate()
sc = spark.sparkContext

df = ....

# Register a function 'foo' which returns a STRING and takes 2 parameters
pywarp.spark.register(df.sql_ctx, 'foo', 2, '')

# Create a temp view
df.createOrReplaceTempView('DF')
# Call WarpScript which converts column _1 to a STRING and returns it
df = df.sql_ctx.sql("SELECT foo(' TOSTRING', _1) AS str FROM DF");
df.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

warp10-pywarp-1.0.1.tar.gz (16.4 kB view details)

Uploaded Source

File details

Details for the file warp10-pywarp-1.0.1.tar.gz.

File metadata

  • Download URL: warp10-pywarp-1.0.1.tar.gz
  • Upload date:
  • Size: 16.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for warp10-pywarp-1.0.1.tar.gz
Algorithm Hash digest
SHA256 26162f2e7e9aaaf241e58bb9ebb19006af8f0ae0ce453869b7f20234f9c93460
MD5 a9b896cbd827e07bf5574128c4fd1e87
BLAKE2b-256 4a58399bff70063f66f6d1d89f3ad04b91455414c014b6b3db1c3d922c7da001

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page