Transformer based embeddings for Wasserstein Distances
Project description
WassersteinWormhole for Python3
Embedding point-clouds by presering Wasserstein distancse with the Wormhole.
This implementation is written in Python3 and relies on FLAX, JAX, & JAX-OTT.
To install JAX, simply run the command:
pip install --upgrade "jax[cuda11_pip]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
And to install WassersteinWormhole along with the rest of the requirements:
pip install wassersteinwormhole
And running the Womrhole on your own set of point-clouds is as simple as:
from wassersteinwormhole import Wormhole
WormholeModel = Wormhole(point_clouds = point_clouds)
WormholeModel.train()
Embeddings = WormholeModel.encode(WormholeModel.point_clouds, WormholeModel.masks)
For more details, follow tutorial at https://github.com/dpeerlab/WassersteinWormhole.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for wassersteinwormhole-0.1.7.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7af2428099279b75221dd4b8a814c9508aec8ee694c629da3a673fde80e04df8 |
|
MD5 | 5b43291f544fae5a72f0793aa0ea628d |
|
BLAKE2b-256 | e95b0815304acac4bb783806ff0d4d195811f6fec2aa23958b69719a0fbc74f4 |
Close
Hashes for wassersteinwormhole-0.1.7-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3314272495308d85994ef489d67a77f39643be206b7e4fcd6e7585241acb0b59 |
|
MD5 | 85dc9d471eaa6aed71c727102c72e6b1 |
|
BLAKE2b-256 | 6989dc2975ab49c4d030768696f72dd668c3f6206bc1d6ca7678a64d3c9e2f66 |