Skip to main content

Wave Venture's Python interface to TE Software API.

Project description


# Wave Venture TEMPEST Client
This is the Python interface to the Wave Venture software.

## Advisory
This interface is for advanced users, and those comfortable in the Python programming language.

More so, because this interface is in a pre-release state, so is sparsely documented,
and may have breaking changes to the API with each release.

Additionally, care should to be taken when manipulating and plotting Results Paths that the data structures are understood, as its possible to misunderstand the data structures and produce incorrect plots / analytics.

Please contact [support@wave-venture.com](support@wave-venture.com) if you
need some assistance.

## Prerequisites
You will need the following prerequisites:

- A active Wave Venture software account and license.
- The [Wave Venture TEMPEST software](https://docs.wave-venture.com/download/) installed on the machine.
- To be logged in to the Wave Venture TEMPEST software with your active account.
- [Python 3.8 or higher](https://www.python.org).

## Install
```console
$ pip install wave-venture
```

## Usage
You should be able to import it with:

```python
import wave_venture as wv
```

### Document Creation
`not yet implemented.`

### Document Loading
You can load existing documents with their `uid`. This can be found in the
Software by right clicking a document in the Document History Panel.

```python
import wave_venture as wv

doc = wv.load(uid="doc_0189c12160974f8482a25611728dea82")
```

### Resolving Results Paths
You can resolve results paths on a document using the `wv.resolve` function.

This returns a `list` of `dicts`, where each `list` entry is a permutation,
and each `dict` is that permutations results path values (keyed with the
results paths name).

Results paths can also be copy and pasted from the software from the Results
Path Browser.

```python
import wave_venture as wv


# Load a finalised document
doc = wv.load(uid="doc_0189c12160974f8482a25611728dea82")

all_permutations = wv.resolve(doc, """
logistics.farm.from_date
logistics.farm.to_date
logistics.farm.availability
""")

for permutation in all_permutations:
print(permutation["uid"], permutation["logistics.farm.from_date"])
```

Results on the results paths are returned as either native Python types such as
`int`, `float`, `datetime.datetime`, etc. For any of the array/matrix-like
results, these are put into a [`xarray.Dataset`](https://docs.xarray.dev/en/stable/).

| Results Path Type | Python Type |
| --- | --- |
| `array` | `xarray.Dataset` |
| `boolean` | `bool` |
| `complex` | `complex` |
| `datetime` | `datetime.datetime` |
| `number` | `int` or `float` |
| `string` | `str` |


### Plotting
You can use the plotter build into the software from this python interface
to generate plots that you may be unable to define within the software itself.

You can also just take the results and use them with your preferred plotting
library, such as [`matplotlib`](https://matplotlib.org).

Otherwise you can make use of the software's plotter:

#### Line
```python
wv.plot(
"line",
data=[
permutation["logistics.farm.availability"],
],
style={
"graph_styles": [
{
"color": 0,
"line_style": "step_left",
"line_pen": "solid",
"line_width": 1,
"point_shape": None,
"point_size": 0,
"name": None,
},
],
"label_x": "Date & Time",
"label_y": "Availability (%)",
},
config={},
size=(1280, 720),
save_path="./availability.png",
save_replace_existing=True,
)
```

#### Scatter
```python
wv.plot(
"scatter",
data=[
permutation["resource.variables.swh"],
permutation["resource.variables.tp"],
],
style={
"label_x": "SWH (m)",
"label_y": "TP (s)",
"color": "#58abd4",
"line_pen": "solid",
"line_style": "none",
"line_width": 1,
"point_shape": "x",
"point_size": 7
},
config={},
size=(1280, 720),
save_path="./swh_tp_scatter.png",
save_replace_existing=True,
)
```

#### Histogram
```python
wv.plot(
"histogram",
data=[
permutation["resource.variables.swh"],
],
style={},
config={
"bin_auto": True,
"bin_min": 0,
"bin_max": 10,
"bin_count": 100,
"bin_width": 0.1,
"count_method": "normalised",
"four_seasons": True,
"start_month": 1,
"show_cdf": True
},
size=(1280, 720),
save_path="./swh_histogram.png",
save_replace_existing=True,
)
```

#### Joint-Probability
```python
wv.plot(
"joint_probability",
data=[
permutation["resource.variables.swh"],
permutation["resource.variables.tp"],
],
style={
"label_x": "SWH (m)",
"label_y": "TP (s)"
},
config={
"bin_auto_x": True,
"bin_min_x": 0,
"bin_max_x": 10,
"bin_count_x": 100,
"bin_width_x": 0.1,
"bin_auto_y": True,
"bin_min_y": 0,
"bin_max_y": 10,
"bin_count_y": 100,
"bin_width_y": 0.1,
"count_method": "normalised",
"four_seasons": True,
"start_month": 1
},
size=(1280, 720),
save_path="./swh_tp_joint_probability.png",
save_replace_existing=True,
)
```

#### Seasonality
```python
wv.plot(
"seasonality",
data=[
permutation["resource.variables.swh"],
],
style={
# For Line Type Only
"min": {
"color": "#58abd4",
"line_pen": "solid",
"line_style": "line",
"line_width": 1,
"point_shape": "",
"point_size": 7
},
"p10": { ... },
"p25": { ... },
"mean": { ... },
"p50": { ... },
"p75": { ... },
"p90": { ... },
"max": { ... },
# For Box Type Only
"color": "#58abd4",
# Valid for both types
"label_y": "swh time series",
},
config={
"period": "monthly",
"type": "line",
},
size=(1280, 720),
save_path="./swh_seasonality.png",
save_replace_existing=True,
)
```

#### Box Plot
```python
wv.plot(
"box",
data=[
permutation["resource.variables.swh"],
],
style={
"color": "#58abd4",
"label_y": "swh time series",
},
config={},
size=(1280, 720),
save_path="./swh_box.png",
save_replace_existing=True,
)
```

#### Rose Plot
```python
wv.plot(
"rose",
data=[
permutation["resource.variables.wind_direction"],
permutation["resource.variables.wind_speed"],
],
style={
"label_angular": "Wind Direction",
"label_radial": "Wind Speed (m/s)"
},
config={
"angle_type": "cardinal", # or "angle"
# only for cardinal angles
"north": 0,
"east": 90,
# common
"bin_auto_angular": True,
"bin_min_angular": 0,
"bin_max_angular": 10,
"bin_count_angular": 100,
"bin_width_angular": 0.1,
"bin_auto_radial": True,
"bin_min_radial": 0,
"bin_max_radial": 10,
"bin_count_radial": 100,
"bin_width_radial": 0.1,
"four_seasons": True,
"start_month": 1
},
size=(1280, 720),
save_path="./swh_seasonality.png",
save_replace_existing=True,
)
```

#### Pie Plot
```python
wv.plot(
"rose",
data=[
permutation["finance.cash_flow.cash_flow_node.capex#percentile:P90#time.sum#value"],
permutation["finance.cash_flow.cash_flow_node.opex#percentile:P90#time.sum#value"],
permutation["finance.cash_flow.cash_flow_node.decex#percentile:P90#time.sum#value"],
],
style={
},
config={
},
size=(1280, 720),
save_path="./swh_seasonality.png",
save_replace_existing=True,
)
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wave_venture-0.0.43.tar.gz (38.6 kB view details)

Uploaded Source

Built Distribution

wave_venture-0.0.43-py3-none-any.whl (33.9 kB view details)

Uploaded Python 3

File details

Details for the file wave_venture-0.0.43.tar.gz.

File metadata

  • Download URL: wave_venture-0.0.43.tar.gz
  • Upload date:
  • Size: 38.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.18

File hashes

Hashes for wave_venture-0.0.43.tar.gz
Algorithm Hash digest
SHA256 096341c24c9b3bcb607249406339dfd6e13597753a35f2da85912f7b7c32525c
MD5 b84a54ceb57cc95f6f108163620cf31a
BLAKE2b-256 e04494011de678a1a89772094984e8013190afd884424b3f758321bd2d092796

See more details on using hashes here.

File details

Details for the file wave_venture-0.0.43-py3-none-any.whl.

File metadata

File hashes

Hashes for wave_venture-0.0.43-py3-none-any.whl
Algorithm Hash digest
SHA256 b486f0a7b37bb11562b27e2ce53a32f738ef7a49388ef749bc31672893a0e3a5
MD5 a34c079e6c21dad8ee93d54aa62c51d3
BLAKE2b-256 1da1ac1f9c9e569ebd6e43b3377869eed9845a40244d968d3357a247b4b230a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page