Skip to main content

Wave Venture's Python interface to TE Software API.

Project description


# Wave Venture TE Client
This is the Python interface to the Wave Venture TE software.

## Warning
This is pre-release code, so should be be treated as unstable.
Releases may also be breaking as the API is defined.

It also means that the documentation is sparse, and any errors you
might encounter might be hard to parse.

Please contact [support@wave-venture.com](support@wave-venture.com) if you
need some assistance.

## Prerequisites
You will need the following prerequisites:

- A active Wave Venture TE software account and license.
- The [Wave Venture TE software](https://docs.wave-venture.com/download/) installed on the machine.
- To be logged in to the Wave Venture TE software with your active account.
- [Python 3.8 or higher](https://www.python.org).

## Install
```console
$ pip install wave-venture
```

## Usage
You should be able to import it with:

```python
import wave_venture as wv
```

### Document Creation
`not yet implemented.`

### Document Loading
You can load existing documents with their `uid`. This can be found in the
Software by right clicking a document in the Document History Panel.

```python
import wave_venture as wv

doc = wv.load(uid="doc_0189c12160974f8482a25611728dea82")
```

### Resolving Results Paths
You can resolve results paths on a document using the `wv.resolve` function.

This returns a `list` of `dicts`, where each `list` entry is a permutation,
and each `dict` is that permutations results path values (keyed with the
results paths name).

Results paths can also be copy and pasted from the software from the Results
Path Browser.

```python
import wave_venture as wv


# Load a finalised document
doc = wv.load(uid="doc_0189c12160974f8482a25611728dea82")

all_permutations = wv.resolve(doc, """
logistics.farm.from_date
logistics.farm.to_date
logistics.farm.availability
""")

for permutation in all_permutations:
print(permutation["uid"], permutation["logistics.farm.from_date"])
```

Results on the results paths are returned as either native Python types such as
`int`, `float`, `datetime.datetime`, etc. For any of the array/matrix-like
results, these are put into a [`xarray.Dataset`](https://docs.xarray.dev/en/stable/).

| Results Path Type | Python Type |
| --- | --- |
| `array` | `xarray.Dataset` |
| `boolean` | `bool` |
| `complex` | `complex` |
| `datetime` | `datetime.datetime` |
| `number` | `int` or `float` |
| `string` | `str` |


### Plotting
You can use the plotter build into the software from this python interface
to generate plots that you may be unable to define within the software itself.

You can also just take the results and use them with your preferred plotting
library, such as [`matplotlib`](https://matplotlib.org).

Otherwise you can make use of the software's plotter:

#### Line
```python
wv.plot(
"line",
data=[
permutation["logistics.farm.availability"],
],
style={
"graph_styles": [
{
"color": 0,
"line_style": "step_left",
"line_pen": "solid",
"line_width": 1,
"point_shape": None,
"point_size": 0,
"name": None,
},
],
"label_x": "Date & Time",
"label_y": "Availability (%)",
},
config={},
size=(1280, 720),
save_path="./availability.png",
save_replace_existing=True,
)
```

#### Scatter
```python
wv.plot(
"scatter",
data=[
permutation["resource.variables.swh"],
permutation["resource.variables.tp"],
],
style={
"label_x": "SWH (m)",
"label_y": "TP (s)",
"color": "#58abd4",
"line_pen": "solid",
"line_style": "none",
"line_width": 1,
"point_shape": "x",
"point_size": 7
},
config={},
size=(1280, 720),
save_path="./swh_tp_scatter.png",
save_replace_existing=True,
)
```

#### Histogram
```python
wv.plot(
"histogram",
data=[
permutation["resource.variables.swh"],
],
style={},
config={
"bin_auto": True,
"bin_min": 0,
"bin_max": 10,
"bin_count": 100,
"bin_width": 0.1,
"count_method": "normalised",
"four_seasons": True,
"start_month": 1,
"show_cdf": True
},
size=(1280, 720),
save_path="./swh_histogram.png",
save_replace_existing=True,
)
```

#### Joint-Probability
```python
wv.plot(
"joint_probability",
data=[
permutation["resource.variables.swh"],
permutation["resource.variables.tp"],
],
style={
"label_x": "SWH (m)",
"label_y": "TP (s)"
},
config={
"bin_auto_x": True,
"bin_min_x": 0,
"bin_max_x": 10,
"bin_count_x": 100,
"bin_width_x": 0.1,
"bin_auto_y": True,
"bin_min_y": 0,
"bin_max_y": 10,
"bin_count_y": 100,
"bin_width_y": 0.1,
"count_method": "normalised",
"four_seasons": True,
"start_month": 1
},
size=(1280, 720),
save_path="./swh_tp_joint_probability.png",
save_replace_existing=True,
)
```

#### Seasonality
```python
wv.plot(
"seasonality",
data=[
permutation["resource.variables.swh"],
],
style={
# For Line Type Only
"min": {
"color": "#58abd4",
"line_pen": "solid",
"line_style": "line",
"line_width": 1,
"point_shape": "",
"point_size": 7
},
"p10": { ... },
"p25": { ... },
"mean": { ... },
"p50": { ... },
"p75": { ... },
"p90": { ... },
"max": { ... },
# For Box Type Only
"color": "#58abd4",
# Valid for both types
"label_y": "swh time series",
},
config={
"period": "monthly",
"type": "line",
},
size=(1280, 720),
save_path="./swh_seasonality.png",
save_replace_existing=True,
)
```

#### Box Plot
```python
wv.plot(
"box",
data=[
permutation["resource.variables.swh"],
],
style={
"color": "#58abd4",
"label_y": "swh time series",
},
config={},
size=(1280, 720),
save_path="./swh_box.png",
save_replace_existing=True,
)
```

#### Rose Plot
```python
wv.plot(
"rose",
data=[
permutation["resource.variables.wind_direction"],
permutation["resource.variables.wind_speed"],
],
style={
"label_angular": "Wind Direction",
"label_radial": "Wind Speed (m/s)"
},
config={
"angle_type": "cardinal", # or "angle"
# only for cardinal angles
"north": 0,
"east": 90,
# common
"bin_auto_angular": True,
"bin_min_angular": 0,
"bin_max_angular": 10,
"bin_count_angular": 100,
"bin_width_angular": 0.1,
"bin_auto_radial": True,
"bin_min_radial": 0,
"bin_max_radial": 10,
"bin_count_radial": 100,
"bin_width_radial": 0.1,
"four_seasons": True,
"start_month": 1
},
size=(1280, 720),
save_path="./swh_seasonality.png",
save_replace_existing=True,
)
```

#### Pie Plot
```python
wv.plot(
"rose",
data=[
permutation["finance.cash_flow.cash_flow_node.capex#percentile:P90#time.sum#value"],
permutation["finance.cash_flow.cash_flow_node.opex#percentile:P90#time.sum#value"],
permutation["finance.cash_flow.cash_flow_node.decex#percentile:P90#time.sum#value"],
],
style={
},
config={
},
size=(1280, 720),
save_path="./swh_seasonality.png",
save_replace_existing=True,
)
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wave-venture-0.0.25.tar.gz (36.7 kB view details)

Uploaded Source

Built Distribution

wave_venture-0.0.25-py3-none-any.whl (32.8 kB view details)

Uploaded Python 3

File details

Details for the file wave-venture-0.0.25.tar.gz.

File metadata

  • Download URL: wave-venture-0.0.25.tar.gz
  • Upload date:
  • Size: 36.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for wave-venture-0.0.25.tar.gz
Algorithm Hash digest
SHA256 a9740b5cdb220a9c4be5b8ceae81fe848a10fd9b5388eb478e49b8f4ec2dd88f
MD5 fb93c0f0fe813baf62d8a0fbc776c76e
BLAKE2b-256 504db5ca80514a58584a535d32c3dd78911187fd3106282e05f717a5edb45607

See more details on using hashes here.

File details

Details for the file wave_venture-0.0.25-py3-none-any.whl.

File metadata

File hashes

Hashes for wave_venture-0.0.25-py3-none-any.whl
Algorithm Hash digest
SHA256 ed623717a7f58d8ec81643c93f4820f5fbbddf97fdf5b443977cb4ef37ab3ef6
MD5 9021727407cb79f561859a3bbf442ff3
BLAKE2b-256 2c759486cb36a7cdff131a1339e6d575a2e35e78264b58ea7d98eebb499ad29c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page