Skip to main content

Wave Venture's Python interface to TE Software API.

Project description


# Wave Venture TE Client
This is the Python interface to the Wave Venture TE software.

## Warning
This is pre-release code, so should be be treated as unstable.
Releases may also be breaking as the API is defined.

It also means that the documentation is sparse, and any errors you
might encounter might be hard to parse.

Please contact [support@wave-venture.com](support@wave-venture.com) if you
need some assistance.

## Prerequisites
You will need the following prerequisites:

- A active Wave Venture TE software account and license.
- The [Wave Venture TE software](https://docs.wave-venture.com/download/) installed on the machine.
- To be logged in to the Wave Venture TE software with your active account.
- [Python 3.8 or higher](https://www.python.org).

## Install
```console
$ pip install wave-venture
```

## Usage
You should be able to import it with:

```python
import wave_venture as wv
```

### Document Creation
`not yet implemented.`

### Document Loading
You can load existing documents with their `uid`. This can be found in the
Software by right clicking a document in the Document History Panel.

```python
import wave_venture as wv

doc = wv.load(uid="doc_0189c12160974f8482a25611728dea82")
```

### Resolving Results Paths
You can resolve results paths on a document using the `wv.resolve` function.

This returns a `list` of `dicts`, where each `list` entry is a permutation,
and each `dict` is that permutations results path values (keyed with the
results paths name).

Results paths can also be copy and pasted from the software from the Results
Path Browser.

```python
import wave_venture as wv


# Load a finalised document
doc = wv.load(uid="doc_0189c12160974f8482a25611728dea82")

all_permutations = wv.resolve(doc, """
logistics.farm.from_date
logistics.farm.to_date
logistics.farm.availability
""")

for permutation in all_permutations:
print(permutation["uid"], permutation["logistics.farm.from_date"])
```

Results on the results paths are returned as either native Python types such as
`int`, `float`, `datetime.datetime`, etc. For any of the array/matrix-like
results, these are put into a [`xarray.Dataset`](https://docs.xarray.dev/en/stable/).

| Results Path Type | Python Type |
| --- | --- |
| `array` | `xarray.Dataset` |
| `boolean` | `bool` |
| `complex` | `complex` |
| `datetime` | `datetime.datetime` |
| `number` | `int` or `float` |
| `string` | `str` |


### Plotting
You can use the plotter build into the software from this python interface
to generate plots that you may be unable to define within the software itself.

You can also just take the results and use them with your preferred plotting
library, such as [`matplotlib`](https://matplotlib.org).

Otherwise you can make use of the software's plotter:

#### Line
```python
wv.plot(
"line",
data=[
permutation["logistics.farm.availability"],
],
style={
"graph_styles": [
{
"color": 0,
"line_style": "step_left",
"line_pen": "solid",
"line_width": 1,
"point_shape": None,
"point_size": 0,
"name": None,
},
],
"label_x": "Date & Time",
"label_y": "Availability (%)",
},
config={},
size=(1280, 720),
save_path="./availability.png",
save_replace_existing=True,
)
```

#### Scatter
```python
wv.plot(
"scatter",
data=[
permutation["resource.variables.swh"],
permutation["resource.variables.tp"],
],
style={
"label_x": "SWH (m)",
"label_y": "TP (s)",
"color": "#58abd4",
"line_pen": "solid",
"line_style": "none",
"line_width": 1,
"point_shape": "x",
"point_size": 7
},
config={},
size=(1280, 720),
save_path="./swh_tp_scatter.png",
save_replace_existing=True,
)
```

#### Histogram
```python
wv.plot(
"histogram",
data=[
permutation["resource.variables.swh"],
],
style={},
config={
"bin_auto": True,
"bin_min": 0,
"bin_max": 10,
"bin_count": 100,
"bin_width": 0.1,
"count_method": "normalised",
"four_seasons": True,
"start_month": 1,
"show_cdf": True
},
size=(1280, 720),
save_path="./swh_histogram.png",
save_replace_existing=True,
)
```

#### Joint-Probability
```python
wv.plot(
"joint_probability",
data=[
permutation["resource.variables.swh"],
permutation["resource.variables.tp"],
],
style={
"label_x": "SWH (m)",
"label_y": "TP (s)"
},
config={
"bin_auto_x": True,
"bin_min_x": 0,
"bin_max_x": 10,
"bin_count_x": 100,
"bin_width_x": 0.1,
"bin_auto_y": True,
"bin_min_y": 0,
"bin_max_y": 10,
"bin_count_y": 100,
"bin_width_y": 0.1,
"count_method": "normalised",
"four_seasons": True,
"start_month": 1
},
size=(1280, 720),
save_path="./swh_tp_joint_probability.png",
save_replace_existing=True,
)
```

#### Seasonality
```python
wv.plot(
"seasonality",
data=[
permutation["resource.variables.swh"],
],
style={
# For Line Type Only
"min": {
"color": "#58abd4",
"line_pen": "solid",
"line_style": "line",
"line_width": 1,
"point_shape": "",
"point_size": 7
},
"p10": { ... },
"p25": { ... },
"mean": { ... },
"p50": { ... },
"p75": { ... },
"p90": { ... },
"max": { ... },
# For Box Type Only
"color": "#58abd4",
# Valid for both types
"label_y": "swh time series",
},
config={
"period": "monthly",
"type": "line",
},
size=(1280, 720),
save_path="./swh_seasonality.png",
save_replace_existing=True,
)
```

#### Box Plot
```python
wv.plot(
"box",
data=[
permutation["resource.variables.swh"],
],
style={
"color": "#58abd4",
"label_y": "swh time series",
},
config={},
size=(1280, 720),
save_path="./swh_box.png",
save_replace_existing=True,
)
```

#### Rose Plot
```python
wv.plot(
"rose",
data=[
permutation["resource.variables.wind_direction"],
permutation["resource.variables.wind_speed"],
],
style={
"label_angular": "Wind Direction",
"label_radial": "Wind Speed (m/s)"
},
config={
"angle_type": "cardinal", # or "angle"
# only for cardinal angles
"north": 0,
"east": 90,
# common
"bin_auto_angular": True,
"bin_min_angular": 0,
"bin_max_angular": 10,
"bin_count_angular": 100,
"bin_width_angular": 0.1,
"bin_auto_radial": True,
"bin_min_radial": 0,
"bin_max_radial": 10,
"bin_count_radial": 100,
"bin_width_radial": 0.1,
"four_seasons": True,
"start_month": 1
},
size=(1280, 720),
save_path="./swh_seasonality.png",
save_replace_existing=True,
)
```

#### Pie Plot
```python
wv.plot(
"rose",
data=[
permutation["finance.cash_flow.cash_flow_node.capex#percentile:P90#time.sum#value"],
permutation["finance.cash_flow.cash_flow_node.opex#percentile:P90#time.sum#value"],
permutation["finance.cash_flow.cash_flow_node.decex#percentile:P90#time.sum#value"],
],
style={
},
config={
},
size=(1280, 720),
save_path="./swh_seasonality.png",
save_replace_existing=True,
)
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wave_venture-0.0.40.tar.gz (38.0 kB view details)

Uploaded Source

Built Distribution

wave_venture-0.0.40-py3-none-any.whl (33.6 kB view details)

Uploaded Python 3

File details

Details for the file wave_venture-0.0.40.tar.gz.

File metadata

  • Download URL: wave_venture-0.0.40.tar.gz
  • Upload date:
  • Size: 38.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.18

File hashes

Hashes for wave_venture-0.0.40.tar.gz
Algorithm Hash digest
SHA256 d0afb46cbcff3259a085f3a900c83ab0b0f430d8735a607a65847be44a37b61e
MD5 a3431769a0fdf68b47c5a60cfb08b701
BLAKE2b-256 d9afe46b507bbfdcd534fd53573a3eba203bf68b47858157ed8f8c231367fe66

See more details on using hashes here.

File details

Details for the file wave_venture-0.0.40-py3-none-any.whl.

File metadata

File hashes

Hashes for wave_venture-0.0.40-py3-none-any.whl
Algorithm Hash digest
SHA256 dff442708ccb9af840d14925f7730fa4343f43dacad635ffe7a1c3e52664b4f9
MD5 49d998b5205f592bef0eecef526ae7f2
BLAKE2b-256 1eee424d85798325156fb52410064f7416e9b227b7caaa7041e476668468df32

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page