Skip to main content

Wavefront Django SDK

Project description

Wavefront Django SDK

This SDK provides support for reporting out of the box metric, histograms and tracing from your Django based application. That data is reported to Wavefront via proxy or direct ingestion. That data will help you understand how your application is performing in production.

Install

pip install wavefront_django_sdk_python

Usage

Configure settings.py of your application to install Django SDK as follows:

# setting.py

from wavefront_pyformance.wavefront_reporter import WavefrontDirectReporter, WavefrontProxyReporter
from wavefront_sdk.common import ApplicationTags
from wavefront_django_sdk import DjangoTracing
from wavefront_opentracing_sdk import reporting, WavefrontTracer

INSTALLED_APPS = [
   '...',
   'wavefront_django_sdk',
   '...'
]

MIDDLEWARE = [
   'wavefront_django_sdk.middleware.WavefrontMiddleware',
   '...'
]

SOURCE = "{SOURCE}"

APPLICATION_TAGS = ApplicationTags(
   application="{APP_NAME}",
   service="{SERVICE_NAME}",
   cluster="{CLUSTER_NAME}",  # Optional
   shard="{SHARD_NAME}," , # Optional
   custom_tags={"location": "Oregon", "env": "Staging"}  # Optional
)

# Sending data via Direct Ingestion
WF_REPORTER = WavefrontDirectReporter(
   server="{ADDRESS}",
   token="{TOKEN}",
   reporting_interval=5,  # Optional, default value is 10 secs
   source=SOURCE,
   tags={"application": APPLICATION_TAGS.application}
).report_minute_distribution()

# Or, Sending data via Proxy
WF_REPORTER = WavefrontProxyReporter(
   host="{HOST}",
   port=2878,  # Optional, Wavefront Proxy running on 2878 by default
   reporting_interval=5,  # Optional, default value is 10 secs
   source=SOURCE,
   tags={"application": APPLICATION_TAGS.application}
).report_minute_distribution()

span_reporter = reporting.WavefrontSpanReporter(
   client=WF_REPORTER.wavefront_client,
   source=SOURCE,
)

OPENTRACING_TRACE_ALL = True  # Optional, default value is False

OPENTRACING_TRACING = DjangoTracing(WavefrontTracer(
   reporter=span_reporter, application_tags=APPLICATION_TAGS))

Out of the box metrics and histograms for your Django based application.

Assume you have the following API in your Django Application:

# urls.py
from django.urls import path
from . import views
 
urlpatterns = [
    path('style/<slug:id>/make', views.make_shirts, name="style/{id}/make")
]
 
# view.py
from django.http import HttpResponse
 
def make_shirts(request, id):
    return HttpResponse("completed", status=200)

Request Gauges

Entity Name Entity Type source application cluster service shard django.resource.module django.resource.func
django.request.style.id.make.GET.inflight.value Gauge host-1 Ordering us-west-1 styling primary styling.views make_shirts
django.total_requests.inflight.value Gauge host-1 Ordering us-west-1 styling primary n/a n/a

Granular Response related metrics

Entity Name Entity Type source application cluster service shard django.resource.module django.resource.func
django.response.style._id_.make.GET.200.cumulative.count Counter host-1 Ordering us-west-1 styling primary styling.views make_shirts
django.response.style._id_.make.GET.200.aggregated_per_shard.count DeltaCounter wavefront-provided Ordering us-west-1 styling primary styling.views make_shirts
django.response.style._id_.make.GET.200.aggregated_per_service.count DeltaCounter wavefront-provided Ordering us-west-1 styling n/a styling.views make_shirts
django.response.style._id_.make.GET.200.aggregated_per_cluster.count DeltaCounter wavefront-provided Ordering us-west-1 n/a n/a styling.views make_shirts
django.response.style._id_.make.GET.200.aggregated_per_application.count DeltaCounter wavefront-provided Ordering n/a n/a n/a styling.views make_shirts

Granular Response related histograms

Entity Name Entity Type source application cluster service shard django.resource.module django.resource.func
django.response.style._id_.make.summary.GET.200.latency.m WavefrontHistogram host-1 Ordering us-west-1 styling primary styling.views make_shirts
django.response.style._id_.make.summary.GET.200.cpu_ns.m WavefrontHistogram host-1 Ordering us-west-1 styling primary styling.views make_shirts

Overall Response related metrics

This includes all the completed requests that returned a response (i.e. success + errors).

Entity Name Entity Type source application cluster service shard
django.response.completed.aggregated_per_source.count Counter host-1 Ordering us-west-1 styling primary
django.response.completed.aggregated_per_shard.count DeltaCounter wavefont-provided Ordering us-west-1 styling primary
django.response.completed.aggregated_per_service.count DeltaCounter wavefont-provided Ordering us-west-1 styling n/a
django.response.completed.aggregated_per_cluster.count DeltaCounter wavefont-provided Ordering us-west-1 n/a n/a
django.response.completed.aggregated_per_application.count DeltaCounter wavefont-provided Ordering n/a n/a n/a

Overall Error Response related metrics

This includes all the completed requests that resulted in an error response (that is HTTP status code of 4xx or 5xx).

Entity Name Entity Type source application cluster service shard
django.response.errors.aggregated_per_source.count Counter host-1 Ordering us-west-1 styling primary
django.response.errors.aggregated_per_shard.count DeltaCounter wavefont-provided Ordering us-west-1 styling primary
django.response.errors.aggregated_per_service.count DeltaCounter wavefont-provided Ordering us-west-1 styling n/a
django.response.errors.aggregated_per_cluster.count DeltaCounter wavefont-provided Ordering us-west-1 n/a n/a
django.response.errors.aggregated_per_application.count DeltaCounter wavefont-provided Ordering n/a n/a n/a

Tracing Spans

Every span will have the operation name as span name, start time in millisec along with duration in millisec. The following table includes all the rest attributes of generated tracing spans.

Span Tag Key Span Tag Value
traceId 4a3dc181-d4ac-44bc-848b-133bb3811c31
parent q908ddfe-4723-40a6-b1d3-1e85b60d9016
followsFrom b768ddfe-4723-40a6-b1d3-1e85b60d9016
spanId c908ddfe-4723-40a6-b1d3-1e85b60d9016
component django
span.kind server
application Ordering
service styling
cluster us-west-1
shard primary
location Oregon (*custom tag)
env Staging (*custom tag)
http.method GET
http.url http://{SERVER_ADDR}/style/{id}/make
http.status_code 502
error True
django.resource.func make_shirts
django.resource.module styling.views

Project details


Release history Release notifications | RSS feed

This version

1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wavefront-django-sdk-python-1.0.tar.gz (9.4 kB view details)

Uploaded Source

File details

Details for the file wavefront-django-sdk-python-1.0.tar.gz.

File metadata

  • Download URL: wavefront-django-sdk-python-1.0.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.1

File hashes

Hashes for wavefront-django-sdk-python-1.0.tar.gz
Algorithm Hash digest
SHA256 0346ec6e9291e2dca593a8da7ff5b89bd1500b942dc4ef5a6252f4b4a096e083
MD5 46233adefdb6fe3bb35dcd9f8c47df49
BLAKE2b-256 2ae464785dc36b7c82bd1795edd74d103eabf387b5265f6f864cb12c1ff6b09f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page