Skip to main content

Wavefront Pyformance Library

Project description

wavefront-pyformance

image image image travis build status

This is a plugin for pyformance which adds Wavefront reporters (via proxy or direct ingestion) and an abstraction that supports tagging at the host level. It also includes support for Wavefront delta counters.

Requirements

Python 2.7+ and Python 3.x are supported.

pip install wavefront-pyformance

Usage

Wavefront Reporter

The Wavefront Reporters support tagging at the host level. Tags passed to a reporter will be applied to every metric before being sent to Wavefront.

Create Wavefront Reporter

You can create a WavefrontProxyReporter or WavefrontDirectReporter as follows:

import pyformance
from wavefront_pyformance import wavefront_reporter

reg = pyformance.MetricsRegistry()

# report metrics to a Wavefront proxy every 60s
wf_proxy_reporter = wavefront_reporter.WavefrontProxyReporter(
    host=host, port=2878, registry=reg,
    source='wavefront-pyformance-example',
    tags={'key1': 'val1', 'key2': 'val2'},
    prefix='python.proxy.',
    reporting_interval=60)
wf_proxy_reporter.start()

# report metrics directly to a Wavefront server every 60s
wf_direct_reporter = wavefront_reporter.WavefrontDirectReporter(
    server=server, token=token, registry=reg,
    source='wavefront-pyformance-exmaple',
    tags={'key1': 'val1', 'key2': 'val2'},
    prefix='python.direct.',
    reporting_interval=60)
wf_direct_reporter.start()

Flush and stop Wavefront Reporter

After create Wavefront Reporter, start() will make the reporter automatically reporting every reporting_interval seconds. Besides that, you can also call report_now() to perform reporting immediately.

# Report immediately
wf_reporter.report_now()

# Stop Wavefront Reporter
wf_reporter.stop()

Delta Counter

To create a Wavefront delta counter:

import pyformance
from wavefront_pyformance import delta

reg = pyformance.MetricsRegistry()
d_0 = delta.delta_counter(reg, 'requests_delta')
d_0.inc(10)

Note: Having the same metric name for any two types of metrics will result in only one time series at the server and thus cause collisions. In general, all metric names should be different. In case you have metrics that you want to track as both a Counter and Delta Counter, consider adding a relevant suffix to one of the metrics to differentiate one metric name from another.

Wavefront Histogram

To create a Wavefront Histogram:

import pyformance
from wavefront_pyformance import wavefront_histogram

reg = pyformance.MetricsRegistry()
h_0 = wavefront_histogram.wavefront_histogram(reg, 'requests_duration')
h_0.add(10)

Python Runtime Metrics

To enable Python runtime metrics reporting, set the enable_runtime_metrics flag to True:

    wf_proxy_reporter = wavefront_reporter.WavefrontProxyReporter(
        host=host, port=2878, registry=reg,
        source='runtime-metric-test',
        tags={'global_tag1': 'val1', 'global_tag2': 'val2'},
        prefix='python.proxy.',
        enable_runtime_metrics=True).report_minute_distribution()

    wf_direct_reporter = wavefront_reporter.WavefrontDirectReporter(
        server=server, token=token, registry=reg,
        source='runtime-metric-test',
        tags={'global_tag1': 'val1', 'global_tag2': 'val2'},
        prefix='python.direct.',
        enable_runtime_metrics=True).report_minute_distribution()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wavefront-pyformance-1.1.0.tar.gz (9.1 kB view details)

Uploaded Source

File details

Details for the file wavefront-pyformance-1.1.0.tar.gz.

File metadata

  • Download URL: wavefront-pyformance-1.1.0.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.0

File hashes

Hashes for wavefront-pyformance-1.1.0.tar.gz
Algorithm Hash digest
SHA256 f437bee3ac64895c49455c4bd5013a52709f8e866f6f46b070e6d1903c696aa9
MD5 7c234308067d001cac3349f1d4f67881
BLAKE2b-256 e21981809aa8953ee3b75e822a8f89b63e62e31ceed4b73f7623ce45cf2ac8d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page