Skip to main content

PyHesaff - Python wrapper for Hessian Affine

Project description

Build and upload to PyPI (main) Latest PyPI version Documentation on ReadTheDocs

Hessian Affine + SIFT keypoints in Python! - Part of the WildMe / Wildbook IA Project.

This is an implementation of Hessian-Affine detector.

The implementation uses a Lowe’s (Lowe 1999, Lowe 2004) like pyramid to sample Gaussian scale-space and localizes local extrema of the Detetminant of Hessian Matrix operator computed on normalized derivatives. Then a Baumberg-Lindeberg discovery of a local affine shape is employed (Lindeberg 1998, Baumberg 2000, Mikolajzyk 2002) to compute affine shape of each det of Hessian extrema. Finally a local neighbourhood is normalized to a fixed size patch and SIFT descriptor(Lowe 1999, Lowe 2004) computed.

IMPLEMENTATION

Implementation depends on OpenCV (2.3.1+). Although, the code is original, the affine iteration and normalization was derived from the code of Krystian Mikolajczyk.

The SIFT descriptor code was patented under a US Patent 6,711,293, which expired on March 7th 2019, so the license is no longer required for use.

OUTPUT

NOTE THIS IS NO LONGER THE CASE. WE MAY REINSTATE THIS.

The built binary rewrites output file: <input_image_name>.hesaff.sift

The output format is compatible with the binaries available from the page “Affine Covariant Features”. The geometry of an affine region is specified by: u,v,a,b,c in a(x-u)(x-u)+2b(x-u)(y-v)+c(y-v)(y-v)=1. The top left corner of the image is at (u,v)=(0,0). The geometry of an affine region is followed by N descriptor values (N = 128).

File format:

N
m
u1 v1 a1 b1 c1 d1(1) d1(2) d1(3) ... d1(N)
      :
      :
um vm am bm cm dm(1) dm(2) dm(3) ... dm(N)

PROPER USE

If you use this code, please refer to

Perdoch, M. and Chum, O. and Matas, J.: Efficient Representation of Local Geometry for Large Scale Object Retrieval. In proceedings of CVPR09. June 2009.

TBD: A reference to technical report describing the details and some retrieval results will be placed here.

NOTES

Requires opencv. On ubuntu you can: sudo apt-get install libopencv-dev. You can also build / use wheels. If cmake is unable to find OpenCV, manually set the location of OpenCV to the OpenCV_DIR environment variable

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wbia-pyhesaff-4.0.0.tar.gz (271.9 kB view details)

Uploaded Source

Built Distributions

wbia_pyhesaff-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

wbia_pyhesaff-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

wbia_pyhesaff-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl (52.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

wbia_pyhesaff-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

wbia_pyhesaff-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl (52.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

wbia_pyhesaff-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

wbia_pyhesaff-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (52.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file wbia-pyhesaff-4.0.0.tar.gz.

File metadata

  • Download URL: wbia-pyhesaff-4.0.0.tar.gz
  • Upload date:
  • Size: 271.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for wbia-pyhesaff-4.0.0.tar.gz
Algorithm Hash digest
SHA256 66af0fa37c0eaf3c4ddea680ce4f5c5035d52e2118dfcc733ed957879caddf04
MD5 acbc86f833c3b6a2347f900715a406f4
BLAKE2b-256 11dd5d2e2e0f6af1e87fa350cf835daccb09557ba048fe8a8bca8425ff83669d

See more details on using hashes here.

File details

Details for the file wbia_pyhesaff-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wbia_pyhesaff-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f5710f874f530c99db90fb5cbdff4d2e93609a0489232b738be9e4ec10f0a57
MD5 3f69d8cfa9ddea058cc49b2f9929f0d0
BLAKE2b-256 8e951605600c49452a6a3a6fe1cddcf93258561c3f9105255082777ac0729ec2

See more details on using hashes here.

File details

Details for the file wbia_pyhesaff-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wbia_pyhesaff-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4d89f69ec841d195110f9f92e2391667278e41da5a650d6638424bbba374ebf
MD5 6e71df46d2703707bba87c0d4c875eb5
BLAKE2b-256 81d83a14739dc5f0451189467b38e088610fecd3ef9a1beedd30262d81f1e6a7

See more details on using hashes here.

File details

Details for the file wbia_pyhesaff-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: wbia_pyhesaff-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 52.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for wbia_pyhesaff-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9b934c62f822ae94655eb7e23dc3503fc6e91b9d298a9db847885b9daed527b
MD5 bea74b334486f19f59934853c5a36d25
BLAKE2b-256 ccaf7159b6f89e345ab73887c2266ccdb41eb87839cddc748310a1506978da09

See more details on using hashes here.

File details

Details for the file wbia_pyhesaff-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wbia_pyhesaff-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c87b6d21f50046e2bee7f1f9534566b3a84102531c7f92fac83fe28ddc94e5a9
MD5 200a66edce8a065e968fc3d8ab8284a4
BLAKE2b-256 4b84f6bed119d7a189e6d627e1cd6b5f621772caacd11a0ef03eac5ee3b6a6d8

See more details on using hashes here.

File details

Details for the file wbia_pyhesaff-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: wbia_pyhesaff-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 52.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for wbia_pyhesaff-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df4ba4f9007309dec3d0c0c77411a2e0054279ccefec2c22d43f5200cfc3f9d6
MD5 bcfa50161531efae6b9e274ce2bef4e5
BLAKE2b-256 5c7476506475648991763e3b260fed36dc3aa0c36c7f0b9b6d2ca35537e1dd81

See more details on using hashes here.

File details

Details for the file wbia_pyhesaff-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wbia_pyhesaff-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31f981f7e620bf275eccfac77a87abec273c73982e16dee2298a14a2d9a441df
MD5 842e7f57fda424f8cb3fc27805e67d3b
BLAKE2b-256 bb4f6ccde56c591181f453a870e6e6f85aa09cde2adb6c3fa4da6731caa92d5c

See more details on using hashes here.

File details

Details for the file wbia_pyhesaff-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: wbia_pyhesaff-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 52.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for wbia_pyhesaff-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 13f2f5b026dc85a2ba882aa49a8f39d61994c9622295eb11c173e8cc9f9ead13
MD5 72b479569453ea33404696054a5f1f62
BLAKE2b-256 c49e3bd0e03165304e694b4a1e31dbf30cc72702e645892f9736e0b623a026a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page