Skip to main content

Unofficial demo datasets for Weaviate

Project description

UNOFFICIAL Weaviate demo data uploader

This is an educational project that aims to make it easy to upload demo data to your instance of Weaviate. The target audience is developers learning how to use Weaviate.

Usage

pip install -U weaviate-demo-datasets

Each dataset includes a default vectorizer configuration for convenience. The target Weaviate instance must include the specified vectorizer module.

Once you instantiate a dataset, you can upload it to Weaviate with the following:

import weaviate_datasets as wd
dataset = wd.JeopardyQuestions1k()  # Instantiate dataset
dataset.upload_dataset(client)  # Pass the Weaviate client instance

Where client is the instantiated weaviate.WeaviateClient object, such as:

import weaviate
import os

client = weaviate.connect_to_local(
    headers={"X-OpenAI-Api-Key": os.getenv("OPENAI_APIKEY")}
)

To use a weaviate.Client object, as used in the Weaviate Python client v3.x, import the dataset class from weaviate_datasets.v3.

import weaviate_datasets.v3_datasets as wd_v3
dataset = wd_v3.JeopardyQuestions1k()  # Instantiate dataset
dataset.upload_dataset(client)  # Pass the Weaviate client instance

Built-in methods

  • .upload_dataset(client) - add defined classes to schema, adds objects
  • .get_sample() - yields sample data object(s)

Available classes

  • Wiki100 (Top 100 Wikipedia articles)

    • WikiChunk collection
    • Various chunking options available:
      • Default: wiki_sections (sections of the Wikipedia article)
      • wiki_section_chunked (sections of the Wikipedia article, chunked into 200 character chunks)
      • wiki_heading_only (only the headings of the Wikipedia article sections)
      • fixed (fixed length chunks of 200 characters)
    • Use it as follows:
      d = wd.Wiki100()
      d.collection_name = "WikiChunk"
      d.set_chunking("wiki_section_chunked")
      upload_responses = d.upload_dataset(client, overwrite=True)
      
  • WineReviews (50 wine reviews)

    • WineReview collection
  • WineReviewsMT (50 wine reviews)

    • WineReviewMT collection, tenants tenantA and tenantB
  • JeopardyQuestions1k (1,000 Jeopardy questions & answers, vectorized with OpenAI text-embedding-ada-002)

    • JeopardyQuestion and JeopardyCategory collections
  • JeopardyQuestions10k (10,000 Jeopardy questions & answers, vectorized with OpenAI text-embedding-ada-002)

    • JeopardyQuestion and JeopardyCategory collections

Available classes - V3 collection

These are available with a V3 suffix, and are compatible with the Weaviate Python client v3.x.

Not including vectors

  • WineReviews (50 wine reviews)
  • WineReviewsMT (50 wine reviews, multi-tenancy enabled)

Including vectors

  • JeopardyQuestions1k (1,000 Jeopardy questions & answers, vectorized with OpenAI text-embedding-ada-002)
  • JeopardyQuestions10k (10,000 Jeopardy questions & answers, vectorized with OpenAI text-embedding-ada-002)
  • JeopardyQuestions1kMT (1,000 Jeopardy questions & answers, multi-tenancy enabled, vectorized with OpenAI text-embedding-ada-002)
  • NewsArticles (News articles, including their corresponding publications, authors & categories, vectorized with OpenAI text-embedding-ada-002)

Data sources

https://www.kaggle.com/datasets/zynicide/wine-reviews https://www.kaggle.com/datasets/tunguz/200000-jeopardy-questions https://github.com/weaviate/DEMO-NewsPublications

Source code

https://github.com/databyjp/wv_demo_uploader

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

weaviate-demo-datasets-0.4.8.tar.gz (67.8 MB view details)

Uploaded Source

Built Distribution

weaviate_demo_datasets-0.4.8-py3-none-any.whl (72.1 MB view details)

Uploaded Python 3

File details

Details for the file weaviate-demo-datasets-0.4.8.tar.gz.

File metadata

File hashes

Hashes for weaviate-demo-datasets-0.4.8.tar.gz
Algorithm Hash digest
SHA256 4854ea4b59d5cbc8bafab6118c05f8a58c51ddd75a24d1934dbf09e9ae597e27
MD5 29809ab9966527af30f2515b915d8c8b
BLAKE2b-256 7b7bb665c03e53326f12549f13872e5b4e2389780c6101e65ca2deef6af1f778

See more details on using hashes here.

File details

Details for the file weaviate_demo_datasets-0.4.8-py3-none-any.whl.

File metadata

File hashes

Hashes for weaviate_demo_datasets-0.4.8-py3-none-any.whl
Algorithm Hash digest
SHA256 df562ad36992d314355d7f9ecdc936c9b1e941257bacaef141fdeea3a5935512
MD5 3b8304968490d8c07d5735a909367fc1
BLAKE2b-256 54876203db28b928c95b6f3c2ee1d3117d3d0fad57b6c24a2858a2b46e699740

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page