Skip to main content

Record sequential storage for deep learning.

Project description

Test DeepSource

WebDataset

WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and uses only sequential/streaming data access. This brings substantial performance advantage in many compute environments, and it is essential for very large scale training.

While WebDataset scales to very large problems, it also works well with smaller datasets and simplifies creation, management, and distribution of training data for deep learning.

WebDataset implements standard PyTorch IterableDataset interface and works with the PyTorch DataLoader. Access to datasets is as simple as:

import webdataset as wds

dataset = wds.WebDataset(url).shuffle(1000).decode("torchrgb").to_tuple("jpg;png", "json")
dataloader = torch.utils.data.DataLoader(dataset, num_workers=4, batch_size=16)

for inputs, outputs in dataloader:
    ...

In that code snippet, url can refer to a local file, a local HTTP server, a cloud storage object, an object on an object store, or even the output of arbitrary command pipelines.

WebDataset fulfills a similar function to Tensorflow's TFRecord/tf.Example classes, but it is much easier to adopt because it does not actually require any kind of data conversion: data is stored in exactly the same format inside tar files as it is on disk, and all preprocessing and data augmentation code remains unchanged.

Documentation

Installation

$ pip install webdataset

For the Github version:

$ pip install git+https://github.com/tmbdev/webdataset.git

Documentation: ReadTheDocs

Introductory Videos

Here are some videos talking about WebDataset and large scale deep learning:

More Examples

Related Libraries and Software

The AIStore server provides an efficient backend for WebDataset; it functions like a combination of web server, content distribution network, P2P network, and distributed file system. Together, AIStore and WebDataset can serve input data from rotational drives distributed across many servers at the speed of local SSDs to many GPUs, at a fraction of the cost. We can easily achieve hundreds of MBytes/s of I/O per GPU even in large, distributed training jobs.

The tarproc utilities provide command line manipulation and processing of webdatasets and other tar files, including splitting, concatenation, and xargs-like functionality.

The tensorcom library provides fast three-tiered I/O; it can be inserted between AIStore and WebDataset to permit distributed data augmentation and I/O. It is particularly useful when data augmentation requires more CPU than the GPU server has available.

You can find the full PyTorch ImageNet sample code converted to WebDataset at tmbdev/pytorch-imagenet-wds

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

webdataset-0.1.58.tar.gz (26.3 kB view details)

Uploaded Source

Built Distribution

webdataset-0.1.58-py3-none-any.whl (30.7 kB view details)

Uploaded Python 3

File details

Details for the file webdataset-0.1.58.tar.gz.

File metadata

  • Download URL: webdataset-0.1.58.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for webdataset-0.1.58.tar.gz
Algorithm Hash digest
SHA256 ad106063e8ebcd012f7f21c58f266013de9b8f2910cdd756010fd4898f940808
MD5 a5103c5d3faa6f2bf5980444a40845bc
BLAKE2b-256 41ede38a07c39e963db802b08e455ef5547996e009e7d363030a46dff6fe263c

See more details on using hashes here.

File details

Details for the file webdataset-0.1.58-py3-none-any.whl.

File metadata

  • Download URL: webdataset-0.1.58-py3-none-any.whl
  • Upload date:
  • Size: 30.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for webdataset-0.1.58-py3-none-any.whl
Algorithm Hash digest
SHA256 10e3ac33bab66b9a09c878b94336853c29e9f47ec358d4c414fb39bb05210b9a
MD5 47b6a37d9040ade24cce552c5a0d288c
BLAKE2b-256 d7591001a236816200ea9adc74dc4b0d5b4f040cf635da897b197018e193d100

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page