Skip to main content

Python API for working with WEBKNOSSOS datasets, annotations, and for WEBKNOSSOS server interaction.

Project description

WEBKNOSSOS Python Library

PyPI version Supported Python Versions Build Status Documentation Code Style uv

Python API for working with WEBKNOSSOS datasets, annotations, and for WEBKNOSSOS server interaction.

For the WEBKNOSSOS server, please refer to https://github.com/scalableminds/webknossos.

Features

  • easy-to-use dataset API for reading/writing/editing raw 2D/3D image data and volume annotations/segmentation in WEBKNOSSOS wrap (*.wkw) format
    • add/remove layers
    • update metadata (datasource-properties.json)
    • up/downsample layers
    • compress layers
    • add/remove magnifications
    • execute any of the wkCuber operations from your code
  • manipulation of WEBKNOSSOS skeleton annotations (*.nml) as Python objects
    • access to nodes, comments, trees, bounding boxes, metadata, etc.
    • create new skeleton annotation from Graph structures or Python objects
  • interaction, connection & scripting with your WEBKNOSSOS instance over the REST API
    • up- & downloading annotations and datasets

Please refer to the documentation for further instructions.

Installation

The webknossos package requires at least Python 3.9.

You can install it from pypi, e.g. via pip:

pip install webknossos

To install webknossos with the depencies for all examples, support for CZI files, and BioFormats conversions, run: pip install webknossos[all].

By default webknossos can only distribute any computations through multiprocessing or Slurm. For Kubernetes or Dask install these additional dependencies:

pip install cluster_tools[kubernetes]
pip install cluster_tools[dask]

Examples

See the examples folder or the the documentation. The dependencies for the examples are not installed by default. Use pip install webknossos[examples] to install them.

Contributions & Development

Please see the respective documentation page.

License

AGPLv3 Copyright scalable minds

Test Data Credits

Excerpts for testing purposes have been sampled from:

  • Dow Jacobo Hossain Siletti Hudspeth (2018). Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit. eLife. DOI:10.7554/eLife.33988
  • Zheng Lauritzen Perlman Robinson Nichols Milkie Torrens Price Fisher Sharifi Calle-Schuler Kmecova Ali Karsh Trautman Bogovic Hanslovsky Jefferis Kazhdan Khairy Saalfeld Fetter Bock (2018). A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell. DOI:10.1016/j.cell.2018.06.019. License: CC BY-NC 4.0
  • Bosch Ackels Pacureanu et al (2022). Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy. Nature Communications. DOI:10.1038/s41467-022-30199-6
  • Hanke, M., Baumgartner, F. J., Ibe, P., Kaule, F. R., Pollmann, S., Speck, O., Zinke, W. & Stadler, J. (2014). A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie. Scientific Data, 1:140003. DOI:10.1038/sdata.2014.3
  • Sample OME-TIFF files (c) by the OME Consortium https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

webknossos-0.15.8.tar.gz (208.8 kB view details)

Uploaded Source

Built Distribution

webknossos-0.15.8-py3-none-any.whl (237.7 kB view details)

Uploaded Python 3

File details

Details for the file webknossos-0.15.8.tar.gz.

File metadata

  • Download URL: webknossos-0.15.8.tar.gz
  • Upload date:
  • Size: 208.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.4.22

File hashes

Hashes for webknossos-0.15.8.tar.gz
Algorithm Hash digest
SHA256 51671a5b5efe0fd9025b82bcecba13b44c8af21730233b9e6031c416cbf4899b
MD5 7d39a4bacd1c05d19e6f568298f1bdff
BLAKE2b-256 c808d0eeefb455dd51a547614fc2bc04a6992656702aee651bf1c9139900d875

See more details on using hashes here.

File details

Details for the file webknossos-0.15.8-py3-none-any.whl.

File metadata

File hashes

Hashes for webknossos-0.15.8-py3-none-any.whl
Algorithm Hash digest
SHA256 fe09bd0d12ed21a4aa8102c8888fb830f38ecbc3dc480c1a230969be510b06a5
MD5 bcd73ebaa0c98786ed24cbbae4ccd354
BLAKE2b-256 c19a6768836962b5e8d2b4efdd79376ffe6893573df7da6754dcd1b658ecbaea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page