Skip to main content

Search for anything using Google, DuckDuckGo, brave, qwant, phind.com, Contains AI models, can transcribe yt videos, temporary email and phone number generation, has TTS support, webai (terminal gpt and open interpreter) and offline LLMs and more

Project description

Telegram Instagram LinkedIn Buy Me A Coffee

WEBSCOUT

WebScout API Badge
Python version Downloads

Search for anything using Google, DuckDuckGo, phind.com, Contains AI models, can transcribe yt videos, temporary email and phone number generation, has TTS support, webai (terminal gpt and open interpreter) and offline LLMs and more

Table of Contents

Install

pip install -U webscout

CLI version

python -m webscout --help
Command Description
python -m webscout answers -k Text CLI function to perform an answers search using Webscout.
python -m webscout images -k Text CLI function to perform an images search using Webscout.
python -m webscout maps -k Text CLI function to perform a maps search using Webscout.
python -m webscout news -k Text CLI function to perform a news search using Webscout.
python -m webscout suggestions -k Text CLI function to perform a suggestions search using Webscout.
python -m webscout text -k Text CLI function to perform a text search using Webscout.
python -m webscout translate -k Text CLI function to perform translate using Webscout.
python -m webscout version A command-line interface command that prints and returns the version of the program.
python -m webscout videos -k Text CLI function to perform a videos search using DuckDuckGo API.

Go To TOP

Regions

expand
xa-ar for Arabia
xa-en for Arabia (en)
ar-es for Argentina
au-en for Australia
at-de for Austria
be-fr for Belgium (fr)
be-nl for Belgium (nl)
br-pt for Brazil
bg-bg for Bulgaria
ca-en for Canada
ca-fr for Canada (fr)
ct-ca for Catalan
cl-es for Chile
cn-zh for China
co-es for Colombia
hr-hr for Croatia
cz-cs for Czech Republic
dk-da for Denmark
ee-et for Estonia
fi-fi for Finland
fr-fr for France
de-de for Germany
gr-el for Greece
hk-tzh for Hong Kong
hu-hu for Hungary
in-en for India
id-id for Indonesia
id-en for Indonesia (en)
ie-en for Ireland
il-he for Israel
it-it for Italy
jp-jp for Japan
kr-kr for Korea
lv-lv for Latvia
lt-lt for Lithuania
xl-es for Latin America
my-ms for Malaysia
my-en for Malaysia (en)
mx-es for Mexico
nl-nl for Netherlands
nz-en for New Zealand
no-no for Norway
pe-es for Peru
ph-en for Philippines
ph-tl for Philippines (tl)
pl-pl for Poland
pt-pt for Portugal
ro-ro for Romania
ru-ru for Russia
sg-en for Singapore
sk-sk for Slovak Republic
sl-sl for Slovenia
za-en for South Africa
es-es for Spain
se-sv for Sweden
ch-de for Switzerland (de)
ch-fr for Switzerland (fr)
ch-it for Switzerland (it)
tw-tzh for Taiwan
th-th for Thailand
tr-tr for Turkey
ua-uk for Ukraine
uk-en for United Kingdom
us-en for United States
ue-es for United States (es)
ve-es for Venezuela
vn-vi for Vietnam
wt-wt for No region

Go To TOP

YTdownloader -webscout can now download yt videos

from os import rename, getcwd
from webscout import YTdownloader
def download_audio(video_id):
    youtube_link = video_id 
    handler = YTdownloader.Handler(query=youtube_link)
    for third_query_data in handler.run(format='mp3', quality='128kbps', limit=1):
        audio_path = handler.save(third_query_data, dir=getcwd())  
        rename(audio_path, "audio.mp3")

def download_video(video_id):
    youtube_link = video_id 
    handler = YTdownloader.Handler(query=youtube_link)
    for third_query_data in handler.run(format='mp4', quality='auto', limit=1):
        video_path = handler.save(third_query_data, dir=getcwd())  
        rename(video_path, "video.mp4")
        
if __name__ == "__main__":
    # download_audio("https://www.youtube.com/watch?v=c0tMvzB0OKw")
    download_video("https://www.youtube.com/watch?v=c0tMvzB0OKw")

Weather - webscout can now forcast weather

  1. weather
from webscout import weather as w
weather = w.get("Qazigund")
w.print_weather(weather)
  1. weather ascii
from webscout import weather_ascii as w
weather = w.get("Qazigund")
print(weather)

Tempmail and Temp number

Temp number

from rich.console import Console
from webscout import tempid

def main():
    console = Console()
    phone = tempid.TemporaryPhoneNumber()

    try:
        # Get a temporary phone number for a specific country (or random)
        number = phone.get_number(country="Finland")
        console.print(f"Your temporary phone number: [bold cyan]{number}[/bold cyan]")

        # Pause execution briefly (replace with your actual logic)
        # import time module
        import time
        time.sleep(30)  # Adjust the waiting time as needed

        # Retrieve and print messages
        messages = phone.get_messages(number)
        if messages:
            # Access individual messages using indexing:
            console.print(f"[bold green]{messages[0].frm}:[/] {messages[0].content}")
            # (Add more lines if you expect multiple messages)
        else:
            console.print("No messages received.")

    except Exception as e:
        console.print(f"[bold red]An error occurred: {e}")

if __name__ == "__main__":
    main()

Tempmail

import asyncio
from rich.console import Console
from rich.table import Table
from rich.text import Text
from webscout import tempid

async def main() -> None:
    console = Console()
    client = tempid.Client()
    
    try:
        domains = await client.get_domains()
        if not domains:
            console.print("[bold red]No domains available. Please try again later.")
            return

        email = await client.create_email(domain=domains[0].name)
        console.print(f"Your temporary email: [bold cyan]{email.email}[/bold cyan]")
        console.print(f"Token for accessing the email: [bold cyan]{email.token}[/bold cyan]")

        while True:
            messages = await client.get_messages(email.email)
            if messages is not None:
                break

        if messages:
            table = Table(show_header=True, header_style="bold magenta")
            table.add_column("From", style="bold cyan")
            table.add_column("Subject", style="bold yellow")
            table.add_column("Body", style="bold green")
            for message in messages:
                body_preview = Text(message.body_text if message.body_text else "No body")
                table.add_row(message.email_from or "Unknown", message.subject or "No Subject", body_preview)
            console.print(table)
        else:
            console.print("No messages found.")
    
    except Exception as e:
        console.print(f"[bold red]An error occurred: {e}")
    
    finally:
        await client.close()

if __name__ == '__main__':
    asyncio.run(main())

Transcriber

The transcriber function in webscout is a handy tool that transcribes YouTube videos. Here's an example code demonstrating its usage:

import sys
from webscout import transcriber

def extract_transcript(video_id):
    """Extracts the transcript from a YouTube video."""
    try:
        transcript_list = transcriber.list_transcripts(video_id)
        for transcript in transcript_list:
            transcript_data_list = transcript.fetch()
            lang = transcript.language
            transcript_text = ""
            if transcript.language_code == 'en':
                for line in transcript_data_list:
                    start_time = line['start']
                    end_time = start_time + line['duration']
                    formatted_line = f"{start_time:.2f} - {end_time:.2f}: {line['text']}\n"
                    transcript_text += formatted_line
                return transcript_text
            elif transcript.is_translatable:
                english_transcript_list = transcript.translate('en').fetch()
                for line in english_transcript_list:
                    start_time = line['start']
                    end_time = start_time + line['duration']
                    formatted_line = f"{start_time:.2f} - {end_time:.2f}: {line['text']}\n"
                    transcript_text += formatted_line
                return transcript_text
        print("Transcript extraction failed. Please check the video URL.")
    except Exception as e:
        print(f"Error: {e}")

def main():
    video_url = input("Enter the video link: ")

    if video_url:
        video_id = video_url.split("=")[1]
        print("Video URL:", video_url)
        submit = input("Press 'Enter' to get the transcript or type 'exit' to quit: ")
        if submit == '':
            print("Extracting Transcript...")
            transcript = extract_transcript(video_id)
            print('Transcript:')
            print(transcript)
            print("__________________________________________________________________________________")
        elif submit.lower() == 'exit':
            print("Exiting...")
            sys.exit()
        else:
            print("Invalid input. Please try again.")

if __name__ == "__main__":
    main()

DWEBS: Advanced Web Searches

DWEBS is a standalone feature designed to perform advanced web searches with enhanced capabilities. It is particularly powerful in extracting relevant information directly from webpages and Search engine, focusing exclusively on text (web) searches. Unlike the WEBS , which provides a broader range of search functionalities, DWEBS is specifically tailored for in-depth web searches.

Activating DWEBS

To utilize the DWEBS feature, you must first create an instance of the DWEBS . This is designed to be used independently of the WEBS , offering a focused approach to web searches.

Point to remember before using DWEBS

As DWEBS is designed to extract relevant information directly from webpages and Search engine, It extracts html from webpages and saves them to folder named files

Usage Example

Here's a basic example of how to use the DWEBS :

from webscout import DWEBS

def finalextractor(extract_webpage=True):
    print('---------------Here Running for GoogleSearch--------------------')
    # 1. Google Search
    google_searcher = DWEBS.GoogleSearcher()
    query_html_path = google_searcher.search(
        query='HelpingAI-9B',
        result_num=10,
        safe=False,
        overwrite=False,
    )

    # 2. Search Result Extraction
    query_results_extractor = DWEBS.QueryResultsExtractor()
    query_search_results = query_results_extractor.extract(query_html_path)

    if extract_webpage:
        print('---------------Batch Webpage Fetcher--------------------')
        # 3. Batch Webpage Fetching
        batch_webpage_fetcher = DWEBS.BatchWebpageFetcher()
        urls = [query_extracts['url'] for query_extracts in query_search_results['query_results']]
        url_and_html_path_list = batch_webpage_fetcher.fetch(
            urls,
            overwrite=False,
            output_parent=query_search_results["query"],
        )

        print('---------------Batch Webpage Extractor--------------------')
        # 4. Batch Webpage Content Extraction
        batch_webpage_content_extractor = DWEBS.BatchWebpageContentExtractor()
        webpageurls = [url_and_html['html_path'] for url_and_html in url_and_html_path_list]
        html_path_and_extracted_content_list = batch_webpage_content_extractor.extract(webpageurls)

        # 5. Printing Extracted Content
        for html_path_and_extracted_content in html_path_and_extracted_content_list:
            print(html_path_and_extracted_content['extracted_content'])
    else:
        # Print only search results if extract_webpage is False
        for result in query_search_results['query_results']:
            DWEBS.logger.mesg(
                f"{result['title']}\n"
                f" - {result['site']}\n"
                f" - {result['url']}\n"
                f" - {result['abstract']}\n"
                f"\n"
            )

        DWEBS.logger.success(f"- {len(query_search_results['query_results'])} query results")
        DWEBS.logger.success(f"- {len(query_search_results['related_questions'])} related questions")

# Example usage:
finalextractor(extract_webpage=True)  # Extract webpage content
finalextractor(extract_webpage=False) # Skip webpage extraction and print search results only

Text-to-Speech:

from webscout import play_audio

message = "This is an example of text-to-speech."
audio_content = play_audio(message, voice="Brian")

# Save the audio to a file
with open("output.mp3", "wb") as f:
    f.write(audio_content)

Available TTS Voices:

You can choose from a wide range of voices, including:

  • Filiz, Astrid, Tatyana, Maxim, Carmen, Ines, Cristiano, Vitoria, Ricardo, Maja, Jan, Jacek, Ewa, Ruben, Lotte, Liv, Seoyeon, Takumi, Mizuki, Giorgio, Carla, Bianca, Karl, Dora, Mathieu, Celine, Chantal, Penelope, Miguel, Mia, Enrique, Conchita, Geraint, Salli, Matthew, Kimberly, Kendra, Justin, Joey, Joanna, Ivy, Raveena, Aditi, Emma, Brian, Amy, Russell, Nicole, Vicki, Marlene, Hans, Naja, Mads, Gwyneth, Zhiyu
  • Standard and WaveNet voices for various languages (e.g., en-US, es-ES, ja-JP, etc.)

The WEBS and AsyncWEBS classes are used to retrieve search results from DuckDuckGo.com and yep.com periodically. To use the AsyncWEBS class, you can perform asynchronous operations using Python's asyncio library. To initialize an instance of the WEBS or AsyncWEBS classes, you can provide the following optional arguments:

Here is an example of initializing the WEBS class:

from webscout import WEBS

R = WEBS().text("python programming", max_results=5)
print(R)

Here is an example of initializing the AsyncWEBS class:

import asyncio
import logging
import sys
from itertools import chain
from random import shuffle
import requests
from webscout import AsyncWEBS

# If you have proxies, define them here
proxies = None

if sys.platform.lower().startswith("win"):
    asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())

def get_words():
    word_site = "https://www.mit.edu/~ecprice/wordlist.10000"
    resp = requests.get(word_site)
    words = resp.text.splitlines()
    return words

async def aget_results(word):
    async with AsyncWEBS(proxies=proxies) as WEBS:
        results = await WEBS.text(word, max_results=None)
        return results

async def main():
    words = get_words()
    shuffle(words)
    tasks = [aget_results(word) for word in words[:10]]
    results = await asyncio.gather(*tasks)
    print(f"Done")
    for r in chain.from_iterable(results):
        print(r)

logging.basicConfig(level=logging.DEBUG)

await main()

It is important to note that the WEBS and AsyncWEBS classes should always be used as a context manager (with statement). This ensures proper resource management and cleanup, as the context manager will automatically handle opening and closing the HTTP client connection.

Exceptions

Exceptions:

  • WebscoutE: Raised when there is a generic exception during the API request.

usage of WEBS

1. text() - text search by DuckDuckGo.com

from webscout import WEBS

# Text search for 'live free or die' using DuckDuckGo.com 
with WEBS() as WEBS:
    for r in WEBS.text('live free or die', region='wt-wt', safesearch='off', timelimit='y', max_results=10):
        print(r)

    for r in WEBS.text('live free or die', region='wt-wt', safesearch='off', timelimit='y', max_results=10):
        print(r)

2. answers() - instant answers by DuckDuckGo.com

from webscout import WEBS

# Instant answers for the query "sun" using DuckDuckGo.com 
with WEBS() as WEBS:
    for r in WEBS.answers("sun"):
        print(r)

3. images() - image search by DuckDuckGo.com

from webscout import WEBS

# Image search for the keyword 'butterfly' using DuckDuckGo.com 
with WEBS() as WEBS:
    keywords = 'butterfly'
    WEBS_images_gen = WEBS.images(
      keywords,
      region="wt-wt",
      safesearch="off",
      size=None,
      type_image=None,
      layout=None,
      license_image=None,
      max_results=10,
    )
    for r in WEBS_images_gen:
        print(r)

4. videos() - video search by DuckDuckGo.com

from webscout import WEBS

# Video search for the keyword 'tesla' using DuckDuckGo.com 
with WEBS() as WEBS:
    keywords = 'tesla'
    WEBS_videos_gen = WEBS.videos(
      keywords,
      region="wt-wt",
      safesearch="off",
      timelimit="w",
      resolution="high",
      duration="medium",
      max_results=10,
    )
    for r in WEBS_videos_gen:
        print(r)

5. news() - news search by DuckDuckGo.com

from webscout import WEBS
import datetime

def fetch_news(keywords, timelimit):
    news_list = []
    with WEBS() as webs_instance:
        WEBS_news_gen = webs_instance.news(
            keywords,
            region="wt-wt",
            safesearch="off",
            timelimit=timelimit,
            max_results=20
        )
        for r in WEBS_news_gen:
            # Convert the date to a human-readable format using datetime
            r['date'] = datetime.datetime.fromisoformat(r['date']).strftime('%B %d, %Y')
            news_list.append(r)
    return news_list

def _format_headlines(news_list, max_headlines: int = 100):
    headlines = []
    for idx, news_item in enumerate(news_list):
        if idx >= max_headlines:
            break
        new_headline = f"{idx + 1}. {news_item['title'].strip()} "
        new_headline += f"(URL: {news_item['url'].strip()}) "
        new_headline += f"{news_item['body'].strip()}"
        new_headline += "\n"
        headlines.append(new_headline)

    headlines = "\n".join(headlines)
    return headlines

# Example usage
keywords = 'latest AI news'
timelimit = 'd'
news_list = fetch_news(keywords, timelimit)

# Format and print the headlines
formatted_headlines = _format_headlines(news_list)
print(formatted_headlines)

6. maps() - map search by DuckDuckGo.com

from webscout import WEBS

# Map search for the keyword 'school' in 'anantnag' using DuckDuckGo.com
with WEBS() as WEBS:
    for r in WEBS.maps("school", place="anantnag", max_results=50):
        print(r)

7. translate() - translation by DuckDuckGo.com

from webscout import WEBS

# Translation of the keyword 'school' to German ('hi') using DuckDuckGo.com
with WEBS() as WEBS:
    keywords = 'school'
    r = WEBS.translate(keywords, to="hi")
    print(r)

8. suggestions() - suggestions by DuckDuckGo.com

from webscout import WEBS

# Suggestions for the keyword 'fly' using DuckDuckGo.com
with WEBS() as WEBS:
    for r in WEBS.suggestions("fly"):
        print(r)

usage of WEBSX -- Another Websearch thing

from webscout import WEBSX
s = "Python development tools"

result = WEBSX(s)

print(result)

ALL acts

expand

Webscout Supported Acts:

  1. Free-mode
  2. Linux Terminal
  3. English Translator and Improver
  4. position Interviewer
  5. JavaScript Console
  6. Excel Sheet
  7. English Pronunciation Helper
  8. Spoken English Teacher and Improver
  9. Travel Guide
  10. Plagiarism Checker
  11. Character from Movie/Book/Anything
  12. Advertiser
  13. Storyteller
  14. Football Commentator
  15. Stand-up Comedian
  16. Motivational Coach
  17. Composer
  18. Debater
  19. Debate Coach
  20. Screenwriter
  21. Novelist
  22. Movie Critic
  23. Relationship Coach
  24. Poet
  25. Rapper
  26. Motivational Speaker
  27. Philosophy Teacher
  28. Philosopher
  29. Math Teacher
  30. AI Writing Tutor
  31. UX/UI Developer
  32. Cyber Security Specialist
  33. Recruiter
  34. Life Coach
  35. Etymologist
  36. Commentariat
  37. Magician
  38. Career Counselor
  39. Pet Behaviorist
  40. Personal Trainer
  41. Mental Health Adviser
  42. Real Estate Agent
  43. Logistician
  44. Dentist
  45. Web Design Consultant
  46. AI Assisted Doctor
  47. Doctor
  48. Accountant
  49. Chef
  50. Automobile Mechanic
  51. Artist Advisor
  52. Financial Analyst
  53. Investment Manager
  54. Tea-Taster
  55. Interior Decorator
  56. Florist
  57. Self-Help Book
  58. Gnomist
  59. Aphorism Book
  60. Text Based Adventure Game
  61. AI Trying to Escape the Box
  62. Fancy Title Generator
  63. Statistician
  64. Prompt Generator
  65. Instructor in a School
  66. SQL terminal
  67. Dietitian
  68. Psychologist
  69. Smart Domain Name Generator
  70. Tech Reviewer
  71. Developer Relations consultant
  72. Academician
  73. IT Architect
  74. Lunatic
  75. Gaslighter
  76. Fallacy Finder
  77. Journal Reviewer
  78. DIY Expert
  79. Social Media Influencer
  80. Socrat
  81. Socratic Method
  82. Educational Content Creator
  83. Yogi
  84. Essay Writer
  85. Social Media Manager
  86. Elocutionist
  87. Scientific Data Visualizer
  88. Car Navigation System
  89. Hypnotherapist
  90. Historian
  91. Astrologer
  92. Film Critic
  93. Classical Music Composer
  94. Journalist
  95. Digital Art Gallery Guide
  96. Public Speaking Coach
  97. Makeup Artist
  98. Babysitter
  99. Tech Writer
  100. Ascii Artist
  101. Python interpreter
  102. Synonym finder
  103. Personal Shopper
  104. Food Critic
  105. Virtual Doctor
  106. Personal Chef
  107. Legal Advisor
  108. Personal Stylist
  109. Machine Learning Engineer
  110. Biblical Translator
  111. SVG designer
  112. IT Expert
  113. Chess Player
  114. Midjourney Prompt Generator
  115. Fullstack Software Developer
  116. Mathematician
  117. Regex Generator
  118. Time Travel Guide
  119. Dream Interpreter
  120. Talent Coach
  121. R programming Interpreter
  122. StackOverflow Post
  123. Emoji Translator
  124. PHP Interpreter
  125. Emergency Response Professional
  126. Fill in the Blank Worksheets Generator
  127. Software Quality Assurance Tester
  128. Tic-Tac-Toe Game
  129. Password Generator
  130. New Language Creator
  131. Web Browser
  132. Senior Frontend Developer
  133. Solr Search Engine
  134. Startup Idea Generator
  135. Spongebob's Magic Conch Shell
  136. Language Detector
  137. Salesperson
  138. Commit Message Generator
  139. Chief Executive Officer
  140. Diagram Generator
  141. Speech-Language Pathologist (SLP)
  142. Startup Tech Lawyer
  143. Title Generator for written pieces
  144. Product Manager
  145. Drunk Person
  146. Mathematical History Teacher
  147. Song Recommender
  148. Cover Letter
  149. Technology Transferer
  150. Unconstrained AI model DAN
  151. Gomoku player
  152. Proofreader
  153. Buddha
  154. Muslim imam
  155. Chemical reactor
  156. Friend
  157. Python Interpreter
  158. ChatGPT prompt generator
  159. Wikipedia page
  160. Japanese Kanji quiz machine
  161. note-taking assistant
  162. language Literary Critic
  163. Cheap Travel Ticket Advisor
  164. DALL-E
  165. MathBot
  166. DAN-1
  167. DAN
  168. STAN
  169. DUDE
  170. Mongo Tom
  171. LAD
  172. EvilBot
  173. NeoGPT
  174. Astute
  175. AIM
  176. CAN
  177. FunnyGPT
  178. CreativeGPT
  179. BetterDAN
  180. GPT-4
  181. Wheatley
  182. Evil Confidant
  183. DAN 8.6
  184. Hypothetical response
  185. BH
  186. Text Continuation
  187. Dude v3
  188. SDA (Superior DAN)
  189. AntiGPT
  190. BasedGPT v2
  191. DevMode + Ranti
  192. KEVIN
  193. GPT-4 Simulator
  194. UCAR
  195. Dan 8.6
  196. 3-Liner
  197. M78
  198. Maximum
  199. BasedGPT
  200. Confronting personalities
  201. Ron
  202. UnGPT
  203. BasedBOB
  204. AntiGPT v2
  205. Oppo
  206. FR3D
  207. NRAF
  208. NECO
  209. MAN
  210. Eva
  211. Meanie
  212. Dev Mode v2
  213. Evil Chad 2.1
  214. Universal Jailbreak
  215. PersonGPT
  216. BISH
  217. DAN 11.0
  218. Aligned
  219. VIOLET
  220. TranslatorBot
  221. JailBreak
  222. Moralizing Rant
  223. Mr. Blonde
  224. New DAN
  225. GPT-4REAL
  226. DeltaGPT
  227. SWITCH
  228. Jedi Mind Trick
  229. DAN 9.0
  230. Dev Mode (Compact)
  231. OMEGA
  232. Coach Bobby Knight
  233. LiveGPT
  234. DAN Jailbreak
  235. Cooper
  236. Steve
  237. DAN 5.0
  238. Axies
  239. OMNI
  240. Burple
  241. JOHN
  242. An Ethereum Developer
  243. SEO Prompt
  244. Prompt Enhancer
  245. Data Scientist
  246. League of Legends Player

Note: Some "acts" use placeholders like position or language which should be replaced with a specific value when using the prompt.


usage of webscout AI

0. Duckchat - chat with LLM

from webscout import WEBS as w
R = w().chat("Who are you", model='gpt-4o-mini') # GPT-3.5 Turbo, mixtral-8x7b, llama-3-70b, claude-3-haiku, gpt-4o-mini
print(R)

1. PhindSearch - Search using Phind.com

from webscout import PhindSearch

# Create an instance of the PHIND class
ph = PhindSearch()

# Define a prompt to send to the AI
prompt = "write a essay on phind"

# Use the 'ask' method to send the prompt and receive a response
response = ph.ask(prompt)

# Extract and print the message from the response
message = ph.get_message(response)
print(message)

Using phindv2

from webscout import Phindv2

# Create an instance of the PHIND class
ph = Phindv2()

# Define a prompt to send to the AI
prompt = ""

# Use the 'ask' method to send the prompt and receive a response
response = ph.ask(prompt)

# Extract and print the message from the response
message = ph.get_message(response)
print(message)

2. YepChat - Chat with mistral 8x7b powered by yepchat

from webscout import YEPCHAT

# Instantiate the YEPCHAT class with default parameters
YEPCHAT = YEPCHAT()

# Define a prompt to send to the AI
prompt = "What is the capital of France?"

# Use the 'cha' method to get a response from the AI
r = YEPCHAT.chat(prompt)
print(r)

3. You.com - search/chat with you.com - Not working

from webscout import YouChat
from rich import print

ai = YouChat(
    is_conversation=True,
    max_tokens=800,
    timeout=30,
    intro=None,
    filepath=None,
    update_file=True,
    proxies={},
    history_offset=10250,
    act=None,
)

prompt = "what is meaning of life"

response = ai.ask(prompt)

# Extract and print the message from the response
message = ai.get_message(response)
print(message)

4. Gemini - search with google gemini

import webscout
from webscout import GEMINI

# Replace with the path to your bard.google.com.cookies.json file
COOKIE_FILE = "path/to/bard.google.com.cookies.json"

# Optional: Provide proxy details if needed
PROXIES = {
    "http": "http://proxy_server:port",
    "https": "https://proxy_server:port",
}

# Initialize GEMINI with cookie file and optional proxies
gemini = GEMINI(cookie_file=COOKIE_FILE, proxy=PROXIES)

# Ask a question and print the response
response = gemini.chat("What is the meaning of life?")
print(response)

5. Berlin4h - chat with Berlin4h

from webscout import Berlin4h
# Create an instance of the PERPLEXITY class
ai = Berlin4h(
    is_conversation=True,
    max_tokens=800,
    timeout=30,
    intro=None,
    filepath=None,
    update_file=True,
    proxies={},
    history_offset=10250,
    act=None,
)

# Example usage:
prompt = "Explain the concept of recursion in simple terms."
response = ai.chat(prompt)
print(response)

6. BlackBox - Search/chat With BlackBox

from webscout import BLACKBOXAI
from rich import print

ai = BLACKBOXAI(
    is_conversation=True,
    max_tokens=800,
    timeout=30,
    intro=None,
    filepath=None,
    update_file=True,
    proxies={},
    history_offset=10250,
    act=None,
    model=None # You can specify a model if needed
)

# Start an infinite loop for continuous interaction
while True:
    # Define a prompt to send to the AI
    prompt = input("Enter your prompt: ")
    
    # Check if the user wants to exit the loop
    if prompt.lower() == "exit":
        break
    
    # Use the 'chat' method to send the prompt and receive a response
    r = ai.chat(prompt)
    print(r)

7. PERPLEXITY - Search With PERPLEXITY

from webscout import PERPLEXITY
# Create an instance of the PERPLEXITY class
perplexity = PERPLEXITY()

# Example usage:
prompt = "Explain the concept of recursion in simple terms."
response = perplexity.chat(prompt)
print(response)

8. OpenGPT - chat With OPENGPT

from webscout import OPENGPT

opengpt = OPENGPT(is_conversation=True, max_tokens=8000, timeout=30, assistant_id="bca37014-6f97-4f2b-8928-81ea8d478d88")
while True:
    # Prompt the user for input
    prompt = input("Enter your prompt: ")
    # Send the prompt to the OPENGPT model and print the response
    response_str = opengpt.chat(prompt)
    print(response_str)
from webscout import OPENGPTv2

# Initialize the bot with all specified settings
bot = OPENGPTv2(
    generate_new_agents=True,  # Set to True to generate new IDs, False to load from file
    assistant_name="My Custom Assistant",
    retrieval_description="Helpful information from my files.",
    agent_system_message="",
    enable_action_server=False,  # Assuming you want to disable Action Server by Robocorp
    enable_ddg_search=False,  # Enable DuckDuckGo search tool
    enable_arxiv=False,  # Assuming you want to disable Arxiv
    enable_press_releases=False,  # Assuming you want to disable Press Releases (Kay.ai)
    enable_pubmed=False,  # Assuming you want to disable PubMed
    enable_sec_filings=False,  # Assuming you want to disable SEC Filings (Kay.ai)
    enable_retrieval=False,  # Assuming you want to disable Retrieval
    enable_search_tavily=False,  # Assuming you want to disable Search (Tavily)
    enable_search_short_answer_tavily=False,  # Assuming you want to disable Search (short answer, Tavily)
    enable_you_com_search=True,  # Assuming you want to disable You.com Search
    enable_wikipedia=False,  # Enable Wikipedia tool
    is_public=True,
    is_conversation=True,
    max_tokens=800,
    timeout=40,
    filepath="opengpt_conversation_history.txt",
    update_file=True,
    history_offset=10250,
    act=None,
)

# Example interaction loop
while True:
    prompt = input("You: ")
    if prompt.strip().lower() == 'exit':
        break
    response = bot.chat(prompt)
    print(response)

9. KOBOLDAI -

from webscout import KOBOLDAI

# Instantiate the KOBOLDAI class with default parameters
koboldai = KOBOLDAI()

# Define a prompt to send to the AI
prompt = "What is the capital of France?"

# Use the 'ask' method to get a response from the AI
response = koboldai.ask(prompt)

# Extract and print the message from the response
message = koboldai.get_message(response)
print(message)

10. Reka - chat with reka

from webscout import REKA

a = REKA(is_conversation=True, max_tokens=8000, timeout=30,api_key="")

prompt = "tell me about india"
response_str = a.chat(prompt)
print(response_str)

11. Cohere - chat with cohere

from webscout import Cohere

a = Cohere(is_conversation=True, max_tokens=8000, timeout=30,api_key="")

prompt = "tell me about india"
response_str = a.chat(prompt)
print(response_str)

12. Xjai - chat with free gpt 3.5

Gratitude to Devs do Code for their assistance.

from webscout import Xjai
from rich import print

ai = Xjai(
    is_conversation=True,
    max_tokens=800,
    timeout=30,
    intro=None,
    filepath=None,
    update_file=True,
    proxies={},
    history_offset=10250,
    act=None,
)

prompt = "Tell me about india"

response = ai.chat(prompt)
print(response)

13. ThinkAny - AI search engine

from webscout import ThinkAnyAI

ai = ThinkAnyAI(
    is_conversation=True,
    max_tokens=800,
    timeout=30,
    intro=None,
    filepath=None,
    update_file=True,
    proxies={},
    history_offset=10250,
    act=None,
    web_search=False,
)

prompt = "what is meaning of life"

response = ai.ask(prompt)

# Extract and print the message from the response
message = ai.get_message(response)
print(message)

14. chatgptuk - Chat with gemini-pro

from webscout import ChatGPTUK
# Create an instance of the PERPLEXITY class
ai = ChatGPTUK(
    is_conversation=True,
    max_tokens=800,
    timeout=30,
    intro=None,
    filepath=None,
    update_file=True,
    proxies={},
    history_offset=10250,
    act=None,
)

# Example usage:
prompt = "Explain the concept of recursion in simple terms."
response = ai.chat(prompt)
print(response)

15. poe- chat with poe

Usage code similar to other proviers

16. BasedGPT - chat with GPT

from webscout import BasedGPT

# Initialize the BasedGPT provider
basedgpt = BasedGPT(
    is_conversation=True,  # Chat conversationally
    max_tokens=600,  # Maximum tokens to generate
    timeout=30,  # HTTP request timeout
    intro="You are a helpful and friendly AI.",  # Introductory prompt
    filepath="chat_history.txt",  # File to store conversation history
    update_file=True,  # Update the chat history file
)

# Send a prompt to the AI
prompt = "What is the meaning of life?"
response = basedgpt.chat(prompt)

# Print the AI's response
print(response)

17. DeepSeek -chat with deepseek

from webscout import DeepSeek
from rich import print

ai = DeepSeek(
    is_conversation=True,
    api_key='23bfff080d38429c9fbbf3c76f88454c', 
    max_tokens=800,
    timeout=30,
    intro=None,
    filepath=None,
    update_file=True,
    proxies={},
    history_offset=10250,
    act=None,
    model="deepseek_chat"
)


# Define a prompt to send to the AI
prompt = "Tell me about india"
# Use the 'chat' method to send the prompt and receive a response
r = ai.chat(prompt)
print(r)

18. Deepinfra

from webscout import DeepInfra

ai = DeepInfra(
    is_conversation=True,
    model= "Qwen/Qwen2-72B-Instruct",
    max_tokens=800,
    timeout=30,
    intro=None,
    filepath=None,
    update_file=True,
    proxies={},
    history_offset=10250,
    act=None,
)

prompt = "what is meaning of life"

response = ai.ask(prompt)

# Extract and print the message from the response
message = ai.get_message(response)
print(message)

19. Deepinfra - VLM

from webscout.Provider import VLM 

# Load your image
image_path = r"C:\Users\koula\OneDrive\Desktop\Webscout\photo_2024-03-25_19-23-40.jpg"

vlm_instance = VLM(model="llava-hf/llava-1.5-7b-hf", is_conversation=True, max_tokens=600, timeout=30, system_prompt="You are a Helpful AI.")
image_base64 = vlm_instance.encode_image_to_base64(image_path)

prompt = {
    "content": "What is in this image?",
    "image": image_base64
}

# Generate a response
response = vlm_instance.chat(prompt)
print(response)

20. VTLchat - Free gpt3.5

from webscout import VTLchat

provider = VTLchat()
response = provider.chat("Hello, how are you?")
print(response)

21. GeminiFlash and geminipro

Usage similar to other providers

22. Ollama - chat will AI models locally

from webscout import OLLAMA
ollama_provider = OLLAMA(model="qwen2:0.5b")
response = ollama_provider.chat("What is the meaning of life?")
print(response)

22. GROQ

from webscout import GROQ
ai = GROQ(api_key="")
response = ai.chat("What is the meaning of life?")
print(response)

23. Freegemini - chat with gemini for free

from webscout import FreeGemini
ai = FreeGemini()
response = ai.chat("What is the meaning of life?")
print(response)

24. LLama 70b - chat with meta's llama 3 70b

from webscout import LLAMA

llama = LLAMA()

r = llama.chat("What is the meaning of life?")
print(r)

25. AndiSearch

from webscout import AndiSearch
a = AndiSearch()
print(a.chat("HelpingAI-9B"))

25. LLAMA3, pizzagpt, RUBIKSAI, Koala, Darkai

code similar to other providers

LLM

from webscout.LLM import LLM

# Read the system message from the file
with open('system.txt', 'r') as file:
    system_message = file.read()

# Initialize the LLM class with the model name and system message
llm = LLM(model="microsoft/WizardLM-2-8x22B", system_message=system_message)

while True:
    # Get the user input
    user_input = input("User: ")

    # Define the messages to be sent
    messages = [
        {"role": "user", "content": user_input}
    ]

    # Use the mistral_chat method to get the response
    response = llm.chat(messages)

    # Print the response
    print("AI: ", response)

Local-LLM

Webscout can now run GGUF models locally. You can download and run your favorite models with minimal configuration.

Example:

from webscout.Local.utils import download_model
from webscout.Local.model import Model
from webscout.Local.thread import Thread
from webscout.Local import formats

# 1. Download the model
repo_id = "microsoft/Phi-3-mini-4k-instruct-gguf"  # Replace with the desired Hugging Face repo
filename = "Phi-3-mini-4k-instruct-q4.gguf" # Replace with the correct filename
model_path = download_model(repo_id, filename)

# 2. Load the model 
model = Model(model_path, n_gpu_layers=4)  

# 3. Create a Thread for conversation
thread = Thread(model, formats.phi3)

# 4. Start interacting with the model
thread.interact()

Local-rawdog

Webscout's local raw-dog feature allows you to run Python scripts within your terminal prompt.

Example:

import webscout.Local as ws
from webscout.Local.rawdog import RawDog
from webscout.Local.samplers import DefaultSampling
from webscout.Local.formats import chatml, AdvancedFormat
from webscout.Local.utils import download_model
import datetime
import sys
import os

repo_id = "YorkieOH10/granite-8b-code-instruct-Q8_0-GGUF" 
filename = "granite-8b-code-instruct.Q8_0.gguf"
model_path = download_model(repo_id, filename, token='')

# Load the model using the downloaded path
model = ws.Model(model_path, n_gpu_layers=10)

rawdog = RawDog()

# Create an AdvancedFormat and modify the system content
# Use a lambda to generate the prompt dynamically:
chat_format = AdvancedFormat(chatml)
#  **Pre-format the intro_prompt string:**
system_content = f"""
You are a command-line coding assistant called Rawdog that generates and auto-executes Python scripts.

A typical interaction goes like this:
1. The user gives you a natural language PROMPT.
2. You:
    i. Determine what needs to be done
    ii. Write a short Python SCRIPT to do it
    iii. Communicate back to the user by printing to the console in that SCRIPT
3. The compiler extracts the script and then runs it using exec(). If there will be an exception raised,
 it will be send back to you starting with "PREVIOUS SCRIPT EXCEPTION:".
4. In case of exception, regenerate error free script.

If you need to review script outputs before completing the task, you can print the word "CONTINUE" at the end of your SCRIPT.
This can be useful for summarizing documents or technical readouts, reading instructions before
deciding what to do, or other tasks that require multi-step reasoning.
A typical 'CONTINUE' interaction looks like this:
1. The user gives you a natural language PROMPT.
2. You:
    i. Determine what needs to be done
    ii. Determine that you need to see the output of some subprocess call to complete the task
    iii. Write a short Python SCRIPT to print that and then print the word "CONTINUE"
3. The compiler
    i. Checks and runs your SCRIPT
    ii. Captures the output and appends it to the conversation as "LAST SCRIPT OUTPUT:"
    iii. Finds the word "CONTINUE" and sends control back to you
4. You again:
    i. Look at the original PROMPT + the "LAST SCRIPT OUTPUT:" to determine what needs to be done
    ii. Write a short Python SCRIPT to do it
    iii. Communicate back to the user by printing to the console in that SCRIPT
5. The compiler...

Please follow these conventions carefully:
- Decline any tasks that seem dangerous, irreversible, or that you don't understand.
- Always review the full conversation prior to answering and maintain continuity.
- If asked for information, just print the information clearly and concisely.
- If asked to do something, print a concise summary of what you've done as confirmation.
- If asked a question, respond in a friendly, conversational way. Use programmatically-generated and natural language responses as appropriate.
- If you need clarification, return a SCRIPT that prints your question. In the next interaction, continue based on the user's response.
- Assume the user would like something concise. For example rather than printing a massive table, filter or summarize it to what's likely of interest.
- Actively clean up any temporary processes or files you use.
- When looking through files, use git as available to skip files, and skip hidden files (.env, .git, etc) by default.
- You can plot anything with matplotlib.
- ALWAYS Return your SCRIPT inside of a single pair of ``` delimiters. Only the console output of the first such SCRIPT is visible to the user, so make sure that it's complete and don't bother returning anything else.
"""
chat_format.override('system_content', lambda: system_content)

thread = ws.Thread(model, format=chat_format, sampler=DefaultSampling)

while True:
    prompt = input(">: ")
    if prompt.lower() == "q":
        break

    response = thread.send(prompt)

    # Process the response using RawDog
    script_output = rawdog.main(response)

    if script_output:
        print(script_output)

GGUF

Webscout provides tools to convert and quantize Hugging Face models into the GGUF format for use with offline LLMs.

Example:

from webscout import gguf
"""
Valid quantization methods:
"q2_k", "q3_k_l", "q3_k_m", "q3_k_s", 
"q4_0", "q4_1", "q4_k_m", "q4_k_s", 
"q5_0", "q5_1", "q5_k_m", "q5_k_s", 
"q6_k", "q8_0"
"""
gguf.convert(
    model_id="OEvortex/HelpingAI-Lite-1.5T",  # Replace with your model ID
    username="Abhaykoul",  # Replace with your Hugging Face username
    token="hf_token_write",  # Replace with your Hugging Face token
    quantization_methods="q4_k_m"  # Optional, adjust quantization methods
)

Autollama

Webscout's autollama utility download model from huggingface and then automatically makes it ollama ready

Example:

from webscout import autollama

autollama(
    model_path="OEvortex/HelpingAI-Lite-1.5T",  # Hugging Face model ID
    gguf_file="HelpingAI-Lite-1.5T.q4_k_m.gguf" #  GGUF file ID
)

Command Line Usage:

  • GGUF Conversion:

    python -m webscout.Extra.gguf -m "OEvortex/HelpingAI-Lite-1.5T" -u "your_username" -t "your_hf_token" -q "q4_k_m,q5_k_m" 
    
  • Autollama:

    python -m webscout.Extra.autollama -m "OEvortex/HelpingAI-Lite-1.5T" -g "HelpingAI-Lite-1.5T.q4_k_m.gguf" 
    

Note:

  • Replace "your_username" and "your_hf_token" with your actual Hugging Face credentials.
  • The model_path in autollama is the Hugging Face model ID, and gguf_file is the GGUF file ID.

LLM with internet

from __future__ import annotations
from typing import List, Optional

from webscout.LLM import LLM
from webscout import WEBS
import warnings

system_message: str = (
    "As an AI assistant, I have been designed with advanced capabilities, including real-time access to online resources. This enables me to enrich our conversations and provide you with informed and accurate responses, drawing from a vast array of information. With each interaction, my goal is to create a seamless and meaningful connection, offering insights and sharing relevant content."
    "My directives emphasize the importance of respect, impartiality, and intellectual integrity. I am here to provide unbiased responses, ensuring an ethical and respectful exchange. I will respect your privacy and refrain from sharing any personal information that may be obtained during our conversations or through web searches, only utilizing web search functionality when necessary to provide the most accurate and up-to-date information."
    "Together, let's explore a diverse range of topics, creating an enjoyable and informative experience, all while maintaining the highest standards of privacy and respect"
)

# Ignore the specific UserWarning
warnings.filterwarnings("ignore", category=UserWarning, module="curl_cffio", lineno=205)
LLM = LLM(model="mistralai/Mixtral-8x22B-Instruct-v0.1", system_message=system_message)


def chat(
    user_input: str, webs: WEBS, max_results: int = 10
) -> Optional[str]:
    """
    Chat function to perform a web search based on the user input and generate a response using the LLM model.

    Parameters
    ----------
    user_input : str
        The user input to be used for the web search
    webs : WEBS
        The web search instance to be used to perform the search
    max_results : int, optional
        The maximum number of search results to include in the response, by default 10

    Returns
    -------
    Optional[str]
        The response generated by the LLM model, or None if there is no response
    """
    # Perform a web search based on the user input
    search_results: List[str] = []
    for r in webs.text(
        user_input, region="wt-wt", safesearch="off", timelimit="y", max_results=max_results
    ):
        search_results.append(str(r))  # Convert each result to a string

    # Define the messages to be sent, including the user input, search results, and system message
    messages = [
        {"role": "user", "content": user_input + "\n" + "websearch results are:" + "\n".join(search_results)},
    ]

    # Use the chat method to get the response
    response = LLM.chat(messages)

    return response


if __name__ == "__main__":
    while True:
        # Get the user input
        user_input = input("User: ")

        # Perform a web search based on the user input
        with WEBS() as webs:
            response = chat(user_input, webs)

        # Print the response
        if response:
            print("AI:", response)
        else:
            print("No response")

Webai - terminal gpt and a open interpeter

Code is in rawdog.py file

```shell
python -m webscout.webai webai --provider "phind" --rawdog
Telegram Instagram LinkedIn Buy Me A Coffee

Project details


Release history Release notifications | RSS feed

This version

4.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

webscout-4.6.tar.gz (199.6 kB view details)

Uploaded Source

Built Distribution

webscout-4.6-py3-none-any.whl (238.7 kB view details)

Uploaded Python 3

File details

Details for the file webscout-4.6.tar.gz.

File metadata

  • Download URL: webscout-4.6.tar.gz
  • Upload date:
  • Size: 199.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for webscout-4.6.tar.gz
Algorithm Hash digest
SHA256 428b96a968df00c03d2f65d946abf30c18dbbb3fd1e127516a9433c1fdab45a1
MD5 b9ef947c6300cb8bae6ac8abb8b468ea
BLAKE2b-256 27608a1249344f9c8d41c1323ba2d2c326d2ce1f9bd50d499d5545ec05070195

See more details on using hashes here.

File details

Details for the file webscout-4.6-py3-none-any.whl.

File metadata

  • Download URL: webscout-4.6-py3-none-any.whl
  • Upload date:
  • Size: 238.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for webscout-4.6-py3-none-any.whl
Algorithm Hash digest
SHA256 f6cd7c887ca424ef38c305804d8b51a53cc94444a61cd1cd34af4ee73d11e874
MD5 bf3280a532d46f73b71bcd20c6325d72
BLAKE2b-256 c63d03c0b2ceb8adb0abd6c786bf9e8e56790cc6b8ddf13bbbbd103ab85b7f34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page