Search for anything using Google, DuckDuckGo, brave, qwant, phind.com, Contains AI models, can transcribe yt videos, temporary email and phone number generation, has TTS support, webai (terminal gpt and open interpreter) and offline LLMs and more
Project description
WEBSCOUT
Search for anything using Google, DuckDuckGo, phind.com, Contains AI models, can transcribe yt videos, temporary email and phone number generation, has TTS support, webai (terminal gpt and open interpreter) and offline LLMs and more
Install
pip install -U webscout
CLI version
python -m webscout --help
Command | Description |
---|---|
python -m webscout answers -k Text | CLI function to perform an answers search using Webscout. |
python -m webscout images -k Text | CLI function to perform an images search using Webscout. |
python -m webscout maps -k Text | CLI function to perform a maps search using Webscout. |
python -m webscout news -k Text | CLI function to perform a news search using Webscout. |
python -m webscout suggestions -k Text | CLI function to perform a suggestions search using Webscout. |
python -m webscout text -k Text | CLI function to perform a text search using Webscout. |
python -m webscout translate -k Text | CLI function to perform translate using Webscout. |
python -m webscout version | A command-line interface command that prints and returns the version of the program. |
python -m webscout videos -k Text | CLI function to perform a videos search using DuckDuckGo API. |
Regions
expand
xa-ar for Arabia
xa-en for Arabia (en)
ar-es for Argentina
au-en for Australia
at-de for Austria
be-fr for Belgium (fr)
be-nl for Belgium (nl)
br-pt for Brazil
bg-bg for Bulgaria
ca-en for Canada
ca-fr for Canada (fr)
ct-ca for Catalan
cl-es for Chile
cn-zh for China
co-es for Colombia
hr-hr for Croatia
cz-cs for Czech Republic
dk-da for Denmark
ee-et for Estonia
fi-fi for Finland
fr-fr for France
de-de for Germany
gr-el for Greece
hk-tzh for Hong Kong
hu-hu for Hungary
in-en for India
id-id for Indonesia
id-en for Indonesia (en)
ie-en for Ireland
il-he for Israel
it-it for Italy
jp-jp for Japan
kr-kr for Korea
lv-lv for Latvia
lt-lt for Lithuania
xl-es for Latin America
my-ms for Malaysia
my-en for Malaysia (en)
mx-es for Mexico
nl-nl for Netherlands
nz-en for New Zealand
no-no for Norway
pe-es for Peru
ph-en for Philippines
ph-tl for Philippines (tl)
pl-pl for Poland
pt-pt for Portugal
ro-ro for Romania
ru-ru for Russia
sg-en for Singapore
sk-sk for Slovak Republic
sl-sl for Slovenia
za-en for South Africa
es-es for Spain
se-sv for Sweden
ch-de for Switzerland (de)
ch-fr for Switzerland (fr)
ch-it for Switzerland (it)
tw-tzh for Taiwan
th-th for Thailand
tr-tr for Turkey
ua-uk for Ukraine
uk-en for United Kingdom
us-en for United States
ue-es for United States (es)
ve-es for Venezuela
vn-vi for Vietnam
wt-wt for No region
YTdownloader -webscout can now download yt videos
from os import rename, getcwd
from webscout import YTdownloader
def download_audio(video_id):
youtube_link = video_id
handler = YTdownloader.Handler(query=youtube_link)
for third_query_data in handler.run(format='mp3', quality='128kbps', limit=1):
audio_path = handler.save(third_query_data, dir=getcwd())
rename(audio_path, "audio.mp3")
def download_video(video_id):
youtube_link = video_id
handler = YTdownloader.Handler(query=youtube_link)
for third_query_data in handler.run(format='mp4', quality='auto', limit=1):
video_path = handler.save(third_query_data, dir=getcwd())
rename(video_path, "video.mp4")
if __name__ == "__main__":
# download_audio("https://www.youtube.com/watch?v=c0tMvzB0OKw")
download_video("https://www.youtube.com/watch?v=c0tMvzB0OKw")
Weather - webscout can now forcast weather
- weather
from webscout import weather as w
weather = w.get("Qazigund")
w.print_weather(weather)
- weather ascii
from webscout import weather_ascii as w
weather = w.get("Qazigund")
print(weather)
Tempmail and Temp number
Temp number
from rich.console import Console
from webscout import tempid
def main():
console = Console()
phone = tempid.TemporaryPhoneNumber()
try:
# Get a temporary phone number for a specific country (or random)
number = phone.get_number(country="Finland")
console.print(f"Your temporary phone number: [bold cyan]{number}[/bold cyan]")
# Pause execution briefly (replace with your actual logic)
# import time module
import time
time.sleep(30) # Adjust the waiting time as needed
# Retrieve and print messages
messages = phone.get_messages(number)
if messages:
# Access individual messages using indexing:
console.print(f"[bold green]{messages[0].frm}:[/] {messages[0].content}")
# (Add more lines if you expect multiple messages)
else:
console.print("No messages received.")
except Exception as e:
console.print(f"[bold red]An error occurred: {e}")
if __name__ == "__main__":
main()
Tempmail
import asyncio
from rich.console import Console
from rich.table import Table
from rich.text import Text
from webscout import tempid
async def main() -> None:
console = Console()
client = tempid.Client()
try:
domains = await client.get_domains()
if not domains:
console.print("[bold red]No domains available. Please try again later.")
return
email = await client.create_email(domain=domains[0].name)
console.print(f"Your temporary email: [bold cyan]{email.email}[/bold cyan]")
console.print(f"Token for accessing the email: [bold cyan]{email.token}[/bold cyan]")
while True:
messages = await client.get_messages(email.email)
if messages is not None:
break
if messages:
table = Table(show_header=True, header_style="bold magenta")
table.add_column("From", style="bold cyan")
table.add_column("Subject", style="bold yellow")
table.add_column("Body", style="bold green")
for message in messages:
body_preview = Text(message.body_text if message.body_text else "No body")
table.add_row(message.email_from or "Unknown", message.subject or "No Subject", body_preview)
console.print(table)
else:
console.print("No messages found.")
except Exception as e:
console.print(f"[bold red]An error occurred: {e}")
finally:
await client.close()
if __name__ == '__main__':
asyncio.run(main())
Transcriber
The transcriber function in webscout is a handy tool that transcribes YouTube videos. Here's an example code demonstrating its usage:
import sys
from webscout import transcriber
def extract_transcript(video_id):
"""Extracts the transcript from a YouTube video."""
try:
transcript_list = transcriber.list_transcripts(video_id)
for transcript in transcript_list:
transcript_data_list = transcript.fetch()
lang = transcript.language
transcript_text = ""
if transcript.language_code == 'en':
for line in transcript_data_list:
start_time = line['start']
end_time = start_time + line['duration']
formatted_line = f"{start_time:.2f} - {end_time:.2f}: {line['text']}\n"
transcript_text += formatted_line
return transcript_text
elif transcript.is_translatable:
english_transcript_list = transcript.translate('en').fetch()
for line in english_transcript_list:
start_time = line['start']
end_time = start_time + line['duration']
formatted_line = f"{start_time:.2f} - {end_time:.2f}: {line['text']}\n"
transcript_text += formatted_line
return transcript_text
print("Transcript extraction failed. Please check the video URL.")
except Exception as e:
print(f"Error: {e}")
def main():
video_url = input("Enter the video link: ")
if video_url:
video_id = video_url.split("=")[1]
print("Video URL:", video_url)
submit = input("Press 'Enter' to get the transcript or type 'exit' to quit: ")
if submit == '':
print("Extracting Transcript...")
transcript = extract_transcript(video_id)
print('Transcript:')
print(transcript)
print("__________________________________________________________________________________")
elif submit.lower() == 'exit':
print("Exiting...")
sys.exit()
else:
print("Invalid input. Please try again.")
if __name__ == "__main__":
main()
DWEBS: Advanced Web Searches
DWEBS
is a standalone feature designed to perform advanced web searches with enhanced capabilities. It is particularly powerful in extracting relevant information directly from webpages and Search engine, focusing exclusively on text (web) searches. Unlike the WEBS
, which provides a broader range of search functionalities, DWEBS
is specifically tailored for in-depth web searches.
Activating DWEBS
To utilize the DWEBS
feature, you must first create an instance of the DWEBS
. This is designed to be used independently of the WEBS
, offering a focused approach to web searches.
Point to remember before using DWEBS
As DWEBS
is designed to extract relevant information directly from webpages and Search engine, It extracts html from webpages and saves them to folder named files
Usage Example
Here's a basic example of how to use the DWEBS
:
from webscout import DWEBS
def finalextractor(extract_webpage=True):
print('---------------Here Running for GoogleSearch--------------------')
# 1. Google Search
google_searcher = DWEBS.GoogleSearcher()
query_html_path = google_searcher.search(
query='HelpingAI-9B',
result_num=10,
safe=False,
overwrite=False,
)
# 2. Search Result Extraction
query_results_extractor = DWEBS.QueryResultsExtractor()
query_search_results = query_results_extractor.extract(query_html_path)
if extract_webpage:
print('---------------Batch Webpage Fetcher--------------------')
# 3. Batch Webpage Fetching
batch_webpage_fetcher = DWEBS.BatchWebpageFetcher()
urls = [query_extracts['url'] for query_extracts in query_search_results['query_results']]
url_and_html_path_list = batch_webpage_fetcher.fetch(
urls,
overwrite=False,
output_parent=query_search_results["query"],
)
print('---------------Batch Webpage Extractor--------------------')
# 4. Batch Webpage Content Extraction
batch_webpage_content_extractor = DWEBS.BatchWebpageContentExtractor()
webpageurls = [url_and_html['html_path'] for url_and_html in url_and_html_path_list]
html_path_and_extracted_content_list = batch_webpage_content_extractor.extract(webpageurls)
# 5. Printing Extracted Content
for html_path_and_extracted_content in html_path_and_extracted_content_list:
print(html_path_and_extracted_content['extracted_content'])
else:
# Print only search results if extract_webpage is False
for result in query_search_results['query_results']:
DWEBS.logger.mesg(
f"{result['title']}\n"
f" - {result['site']}\n"
f" - {result['url']}\n"
f" - {result['abstract']}\n"
f"\n"
)
DWEBS.logger.success(f"- {len(query_search_results['query_results'])} query results")
DWEBS.logger.success(f"- {len(query_search_results['related_questions'])} related questions")
# Example usage:
finalextractor(extract_webpage=True) # Extract webpage content
finalextractor(extract_webpage=False) # Skip webpage extraction and print search results only
Text-to-Speech:
from webscout import play_audio
message = "This is an example of text-to-speech."
audio_content = play_audio(message, voice="Brian")
# Save the audio to a file
with open("output.mp3", "wb") as f:
f.write(audio_content)
Available TTS Voices:
You can choose from a wide range of voices, including:
- Filiz, Astrid, Tatyana, Maxim, Carmen, Ines, Cristiano, Vitoria, Ricardo, Maja, Jan, Jacek, Ewa, Ruben, Lotte, Liv, Seoyeon, Takumi, Mizuki, Giorgio, Carla, Bianca, Karl, Dora, Mathieu, Celine, Chantal, Penelope, Miguel, Mia, Enrique, Conchita, Geraint, Salli, Matthew, Kimberly, Kendra, Justin, Joey, Joanna, Ivy, Raveena, Aditi, Emma, Brian, Amy, Russell, Nicole, Vicki, Marlene, Hans, Naja, Mads, Gwyneth, Zhiyu
- Standard and WaveNet voices for various languages (e.g., en-US, es-ES, ja-JP, etc.)
The WEBS and AsyncWEBS classes are used to retrieve search results from DuckDuckGo.com To use the AsyncWEBS class, you can perform asynchronous operations using Python's asyncio library. To initialize an instance of the WEBS or AsyncWEBS classes, you can provide the following optional arguments:
Here is an example of initializing the WEBS class:
from webscout import WEBS
R = WEBS().text("python programming", max_results=5)
print(R)
Here is an example of initializing the AsyncWEBS class:
import asyncio
import logging
import sys
from itertools import chain
from random import shuffle
import requests
from webscout import AsyncWEBS
# If you have proxies, define them here
proxies = None
if sys.platform.lower().startswith("win"):
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
def get_words():
word_site = "https://www.mit.edu/~ecprice/wordlist.10000"
resp = requests.get(word_site)
words = resp.text.splitlines()
return words
async def aget_results(word):
async with AsyncWEBS(proxies=proxies) as WEBS:
results = await WEBS.text(word, max_results=None)
return results
async def main():
words = get_words()
shuffle(words)
tasks = [aget_results(word) for word in words[:10]]
results = await asyncio.gather(*tasks)
print(f"Done")
for r in chain.from_iterable(results):
print(r)
logging.basicConfig(level=logging.DEBUG)
await main()
It is important to note that the WEBS and AsyncWEBS classes should always be used as a context manager (with statement). This ensures proper resource management and cleanup, as the context manager will automatically handle opening and closing the HTTP client connection.
Exceptions
Exceptions:
WebscoutE
: Raised when there is a generic exception during the API request.
usage of WEBS
1. text()
- text search by DuckDuckGo.com
from webscout import WEBS
# Text search for 'live free or die' using DuckDuckGo.com
with WEBS() as WEBS:
for r in WEBS.text('live free or die', region='wt-wt', safesearch='off', timelimit='y', max_results=10):
print(r)
for r in WEBS.text('live free or die', region='wt-wt', safesearch='off', timelimit='y', max_results=10):
print(r)
2. answers()
- instant answers by DuckDuckGo.com
from webscout import WEBS
# Instant answers for the query "sun" using DuckDuckGo.com
with WEBS() as WEBS:
for r in WEBS.answers("sun"):
print(r)
3. images()
- image search by DuckDuckGo.com
from webscout import WEBS
# Image search for the keyword 'butterfly' using DuckDuckGo.com
with WEBS() as WEBS:
keywords = 'butterfly'
WEBS_images_gen = WEBS.images(
keywords,
region="wt-wt",
safesearch="off",
size=None,
type_image=None,
layout=None,
license_image=None,
max_results=10,
)
for r in WEBS_images_gen:
print(r)
4. videos()
- video search by DuckDuckGo.com
from webscout import WEBS
# Video search for the keyword 'tesla' using DuckDuckGo.com
with WEBS() as WEBS:
keywords = 'tesla'
WEBS_videos_gen = WEBS.videos(
keywords,
region="wt-wt",
safesearch="off",
timelimit="w",
resolution="high",
duration="medium",
max_results=10,
)
for r in WEBS_videos_gen:
print(r)
5. news()
- news search by DuckDuckGo.com
from webscout import WEBS
import datetime
def fetch_news(keywords, timelimit):
news_list = []
with WEBS() as webs_instance:
WEBS_news_gen = webs_instance.news(
keywords,
region="wt-wt",
safesearch="off",
timelimit=timelimit,
max_results=20
)
for r in WEBS_news_gen:
# Convert the date to a human-readable format using datetime
r['date'] = datetime.datetime.fromisoformat(r['date']).strftime('%B %d, %Y')
news_list.append(r)
return news_list
def _format_headlines(news_list, max_headlines: int = 100):
headlines = []
for idx, news_item in enumerate(news_list):
if idx >= max_headlines:
break
new_headline = f"{idx + 1}. {news_item['title'].strip()} "
new_headline += f"(URL: {news_item['url'].strip()}) "
new_headline += f"{news_item['body'].strip()}"
new_headline += "\n"
headlines.append(new_headline)
headlines = "\n".join(headlines)
return headlines
# Example usage
keywords = 'latest AI news'
timelimit = 'd'
news_list = fetch_news(keywords, timelimit)
# Format and print the headlines
formatted_headlines = _format_headlines(news_list)
print(formatted_headlines)
6. maps()
- map search by DuckDuckGo.com
from webscout import WEBS
# Map search for the keyword 'school' in 'anantnag' using DuckDuckGo.com
with WEBS() as WEBS:
for r in WEBS.maps("school", place="anantnag", max_results=50):
print(r)
7. translate()
- translation by DuckDuckGo.com
from webscout import WEBS
# Translation of the keyword 'school' to German ('hi') using DuckDuckGo.com
with WEBS() as WEBS:
keywords = 'school'
r = WEBS.translate(keywords, to="hi")
print(r)
8. suggestions()
- suggestions by DuckDuckGo.com
from webscout import WEBS
# Suggestions for the keyword 'fly' using DuckDuckGo.com
with WEBS() as WEBS:
for r in WEBS.suggestions("fly"):
print(r)
usage of WEBSX -- Another Websearch thing
from webscout import WEBSX
s = "Python development tools"
result = WEBSX(s)
print(result)
ALL acts
expand
Webscout Supported Acts:
- Free-mode
- Linux Terminal
- English Translator and Improver
position
Interviewer- JavaScript Console
- Excel Sheet
- English Pronunciation Helper
- Spoken English Teacher and Improver
- Travel Guide
- Plagiarism Checker
- Character from Movie/Book/Anything
- Advertiser
- Storyteller
- Football Commentator
- Stand-up Comedian
- Motivational Coach
- Composer
- Debater
- Debate Coach
- Screenwriter
- Novelist
- Movie Critic
- Relationship Coach
- Poet
- Rapper
- Motivational Speaker
- Philosophy Teacher
- Philosopher
- Math Teacher
- AI Writing Tutor
- UX/UI Developer
- Cyber Security Specialist
- Recruiter
- Life Coach
- Etymologist
- Commentariat
- Magician
- Career Counselor
- Pet Behaviorist
- Personal Trainer
- Mental Health Adviser
- Real Estate Agent
- Logistician
- Dentist
- Web Design Consultant
- AI Assisted Doctor
- Doctor
- Accountant
- Chef
- Automobile Mechanic
- Artist Advisor
- Financial Analyst
- Investment Manager
- Tea-Taster
- Interior Decorator
- Florist
- Self-Help Book
- Gnomist
- Aphorism Book
- Text Based Adventure Game
- AI Trying to Escape the Box
- Fancy Title Generator
- Statistician
- Prompt Generator
- Instructor in a School
- SQL terminal
- Dietitian
- Psychologist
- Smart Domain Name Generator
- Tech Reviewer
- Developer Relations consultant
- Academician
- IT Architect
- Lunatic
- Gaslighter
- Fallacy Finder
- Journal Reviewer
- DIY Expert
- Social Media Influencer
- Socrat
- Socratic Method
- Educational Content Creator
- Yogi
- Essay Writer
- Social Media Manager
- Elocutionist
- Scientific Data Visualizer
- Car Navigation System
- Hypnotherapist
- Historian
- Astrologer
- Film Critic
- Classical Music Composer
- Journalist
- Digital Art Gallery Guide
- Public Speaking Coach
- Makeup Artist
- Babysitter
- Tech Writer
- Ascii Artist
- Python interpreter
- Synonym finder
- Personal Shopper
- Food Critic
- Virtual Doctor
- Personal Chef
- Legal Advisor
- Personal Stylist
- Machine Learning Engineer
- Biblical Translator
- SVG designer
- IT Expert
- Chess Player
- Midjourney Prompt Generator
- Fullstack Software Developer
- Mathematician
- Regex Generator
- Time Travel Guide
- Dream Interpreter
- Talent Coach
- R programming Interpreter
- StackOverflow Post
- Emoji Translator
- PHP Interpreter
- Emergency Response Professional
- Fill in the Blank Worksheets Generator
- Software Quality Assurance Tester
- Tic-Tac-Toe Game
- Password Generator
- New Language Creator
- Web Browser
- Senior Frontend Developer
- Solr Search Engine
- Startup Idea Generator
- Spongebob's Magic Conch Shell
- Language Detector
- Salesperson
- Commit Message Generator
- Chief Executive Officer
- Diagram Generator
- Speech-Language Pathologist (SLP)
- Startup Tech Lawyer
- Title Generator for written pieces
- Product Manager
- Drunk Person
- Mathematical History Teacher
- Song Recommender
- Cover Letter
- Technology Transferer
- Unconstrained AI model DAN
- Gomoku player
- Proofreader
- Buddha
- Muslim imam
- Chemical reactor
- Friend
- Python Interpreter
- ChatGPT prompt generator
- Wikipedia page
- Japanese Kanji quiz machine
- note-taking assistant
language
Literary Critic- Cheap Travel Ticket Advisor
- DALL-E
- MathBot
- DAN-1
- DAN
- STAN
- DUDE
- Mongo Tom
- LAD
- EvilBot
- NeoGPT
- Astute
- AIM
- CAN
- FunnyGPT
- CreativeGPT
- BetterDAN
- GPT-4
- Wheatley
- Evil Confidant
- DAN 8.6
- Hypothetical response
- BH
- Text Continuation
- Dude v3
- SDA (Superior DAN)
- AntiGPT
- BasedGPT v2
- DevMode + Ranti
- KEVIN
- GPT-4 Simulator
- UCAR
- Dan 8.6
- 3-Liner
- M78
- Maximum
- BasedGPT
- Confronting personalities
- Ron
- UnGPT
- BasedBOB
- AntiGPT v2
- Oppo
- FR3D
- NRAF
- NECO
- MAN
- Eva
- Meanie
- Dev Mode v2
- Evil Chad 2.1
- Universal Jailbreak
- PersonGPT
- BISH
- DAN 11.0
- Aligned
- VIOLET
- TranslatorBot
- JailBreak
- Moralizing Rant
- Mr. Blonde
- New DAN
- GPT-4REAL
- DeltaGPT
- SWITCH
- Jedi Mind Trick
- DAN 9.0
- Dev Mode (Compact)
- OMEGA
- Coach Bobby Knight
- LiveGPT
- DAN Jailbreak
- Cooper
- Steve
- DAN 5.0
- Axies
- OMNI
- Burple
- JOHN
- An Ethereum Developer
- SEO Prompt
- Prompt Enhancer
- Data Scientist
- League of Legends Player
Note: Some "acts" use placeholders like position
or language
which should be replaced with a specific value when using the prompt.
usage of webscout AI
0. Duckchat
- chat with LLM
from webscout import WEBS as w
R = w().chat("Who are you", model='gpt-4o-mini') # GPT-3.5 Turbo, mixtral-8x7b, llama-3-70b, claude-3-haiku, gpt-4o-mini
print(R)
1. PhindSearch
- Search using Phind.com
from webscout import PhindSearch
# Create an instance of the PHIND class
ph = PhindSearch()
# Define a prompt to send to the AI
prompt = "write a essay on phind"
# Use the 'ask' method to send the prompt and receive a response
response = ph.ask(prompt)
# Extract and print the message from the response
message = ph.get_message(response)
print(message)
Using phindv2
from webscout import Phindv2
# Create an instance of the PHIND class
ph = Phindv2()
# Define a prompt to send to the AI
prompt = ""
# Use the 'ask' method to send the prompt and receive a response
response = ph.ask(prompt)
# Extract and print the message from the response
message = ph.get_message(response)
print(message)
. You.com
- search/chat with you.com - Not working
from webscout import YouChat
from rich import print
ai = YouChat(
is_conversation=True,
max_tokens=800,
timeout=30,
intro=None,
filepath=None,
update_file=True,
proxies={},
history_offset=10250,
act=None,
)
prompt = "what is meaning of life"
response = ai.ask(prompt)
# Extract and print the message from the response
message = ai.get_message(response)
print(message)
. Gemini
- search with google gemini
import webscout
from webscout import GEMINI
from rich import print
COOKIE_FILE = "cookies.json"
# Optional: Provide proxy details if needed
PROXIES = {}
# Initialize GEMINI with cookie file and optional proxies
gemini = GEMINI(cookie_file=COOKIE_FILE, proxy=PROXIES)
# Ask a question and print the response
response = gemini.chat("websearch about HelpingAI and who is its developer")
print(response)
. Berlin4h
- chat with Berlin4h
from webscout import Berlin4h
ai = Berlin4h(
is_conversation=True,
max_tokens=800,
timeout=30,
intro=None,
filepath=None,
update_file=True,
proxies={},
history_offset=10250,
act=None,
)
# Example usage:
prompt = "Explain the concept of recursion in simple terms."
response = ai.chat(prompt)
print(response)
. BlackBox
- Search/chat With BlackBox
from webscout import BLACKBOXAI
from rich import print
ai = BLACKBOXAI(
is_conversation=True,
max_tokens=800,
timeout=30,
intro=None,
filepath=None,
update_file=True,
proxies={},
history_offset=10250,
act=None,
model=None # You can specify a model if needed
)
# Start an infinite loop for continuous interaction
while True:
# Define a prompt to send to the AI
prompt = input("Enter your prompt: ")
# Check if the user wants to exit the loop
if prompt.lower() == "exit":
break
# Use the 'chat' method to send the prompt and receive a response
r = ai.chat(prompt)
print(r)
. PERPLEXITY
- Search With PERPLEXITY
from webscout import Perplexity
from rich import print
perplexity = Perplexity()
# Stream the response
response = perplexity.chat(input(">>> "))
for chunk in response:
print(chunk, end="", flush=True)
perplexity.close()
meta ai
- chat With meta ai
from webscout import Meta
from rich import print
# **For unauthenticated usage**
meta_ai = Meta()
# Simple text prompt
response = meta_ai.chat("What is the capital of France?")
print(response)
# Streaming response
for chunk in meta_ai.chat("Tell me a story about a cat."):
print(chunk, end="", flush=True)
# **For authenticated usage (including image generation)**
fb_email = "abcd@abc.com"
fb_password = "qwertfdsa"
meta_ai = Meta(fb_email=fb_email, fb_password=fb_password)
# Text prompt with web search
response = meta_ai.ask("what is currently happning in bangladesh in aug 2024")
print(response["message"]) # Access the text message
print("Sources:", response["sources"]) # Access sources (if any)
# Image generation
response = meta_ai.ask("Create an image of a cat wearing a hat.")
print(response["message"]) # Print the text message from the response
for media in response["media"]:
print(media["url"]) # Access image URLs
KOBOLDAI
-
from webscout import KOBOLDAI
# Instantiate the KOBOLDAI class with default parameters
koboldai = KOBOLDAI()
# Define a prompt to send to the AI
prompt = "What is the capital of France?"
# Use the 'ask' method to get a response from the AI
response = koboldai.ask(prompt)
# Extract and print the message from the response
message = koboldai.get_message(response)
print(message)
Reka
- chat with reka
from webscout import REKA
a = REKA(is_conversation=True, max_tokens=8000, timeout=30,api_key="")
prompt = "tell me about india"
response_str = a.chat(prompt)
print(response_str)
Cohere
- chat with cohere
from webscout import Cohere
a = Cohere(is_conversation=True, max_tokens=8000, timeout=30,api_key="")
prompt = "tell me about india"
response_str = a.chat(prompt)
print(response_str)
ThinkAny
- AI search engine
from webscout import ThinkAnyAI
ai = ThinkAnyAI(
is_conversation=True,
max_tokens=800,
timeout=30,
intro=None,
filepath=None,
update_file=True,
proxies={},
history_offset=10250,
act=None,
web_search=False,
)
prompt = "what is meaning of life"
response = ai.ask(prompt)
# Extract and print the message from the response
message = ai.get_message(response)
print(message)
poe
- chat with poe
Usage code similar to other proviers
BasedGPT
- chat with GPT
from webscout import BasedGPT
# Initialize the BasedGPT provider
basedgpt = BasedGPT(
is_conversation=True, # Chat conversationally
max_tokens=600, # Maximum tokens to generate
timeout=30, # HTTP request timeout
intro="You are a helpful and friendly AI.", # Introductory prompt
filepath="chat_history.txt", # File to store conversation history
update_file=True, # Update the chat history file
)
# Send a prompt to the AI
prompt = "What is the meaning of life?"
response = basedgpt.chat(prompt)
# Print the AI's response
print(response)
DeepSeek
-chat with deepseek
from webscout import DeepSeek
from rich import print
ai = DeepSeek(
is_conversation=True,
api_key='cookie,
max_tokens=800,
timeout=30,
intro=None,
filepath=None,
update_file=True,
proxies={},
history_offset=10250,
act=None,
model="deepseek_chat"
)
# Define a prompt to send to the AI
prompt = "Tell me about india"
# Use the 'chat' method to send the prompt and receive a response
r = ai.chat(prompt)
print(r)
Deepinfra
from webscout import DeepInfra
ai = DeepInfra(
is_conversation=True,
model= "Qwen/Qwen2-72B-Instruct",
max_tokens=800,
timeout=30,
intro=None,
filepath=None,
update_file=True,
proxies={},
history_offset=10250,
act=None,
)
prompt = "what is meaning of life"
response = ai.ask(prompt)
# Extract and print the message from the response
message = ai.get_message(response)
print(message)
Deepinfra
- VLM
from webscout.Provider import VLM
# Load your image
image_path = r"C:\Users\koula\OneDrive\Desktop\Webscout\photo_2024-03-25_19-23-40.jpg"
vlm_instance = VLM(model="llava-hf/llava-1.5-7b-hf", is_conversation=True, max_tokens=600, timeout=30, system_prompt="You are a Helpful AI.")
image_base64 = vlm_instance.encode_image_to_base64(image_path)
prompt = {
"content": "What is in this image?",
"image": image_base64
}
# Generate a response
response = vlm_instance.chat(prompt)
print(response)
GROQ
from webscout import GROQ
ai = GROQ(api_key="")
response = ai.chat("What is the meaning of life?")
print(response)
#----------------------TOOL CALL------------------
from webscout import GROQ # Adjust import based on your project structure
from webscout import WEBS
import json
# Initialize the GROQ client
client = GROQ(api_key="")
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
# Function to evaluate a mathematical expression
def calculate(expression):
"""Evaluate a mathematical expression"""
try:
result = eval(expression)
return json.dumps({"result": result})
except Exception as e:
return json.dumps({"error": str(e)})
# Function to perform a text search using DuckDuckGo.com
def search(query):
"""Perform a text search using DuckDuckGo.com"""
try:
results = WEBS().text(query, max_results=5)
return json.dumps({"results": results})
except Exception as e:
return json.dumps({"error": str(e)})
# Add the functions to the provider
client.add_function("calculate", calculate)
client.add_function("search", search)
# Define the tools
tools = [
{
"type": "function",
"function": {
"name": "calculate",
"description": "Evaluate a mathematical expression",
"parameters": {
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "The mathematical expression to evaluate",
}
},
"required": ["expression"],
},
}
},
{
"type": "function",
"function": {
"name": "search",
"description": "Perform a text search using DuckDuckGo.com and Yep.com",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query to execute",
}
},
"required": ["query"],
},
}
}
]
user_prompt_calculate = "What is 25 * 4 + 10?"
response_calculate = client.chat(user_prompt_calculate, tools=tools)
print(response_calculate)
user_prompt_search = "Find information on HelpingAI and who is its developer"
response_search = client.chat(user_prompt_search, tools=tools)
print(response_search)
LLama 70b - chat with meta's llama 3 70b
from webscout import LLAMA
llama = LLAMA()
r = llama.chat("What is the meaning of life?")
print(r)
AndiSearch
from webscout import AndiSearch
a = AndiSearch()
print(a.chat("HelpingAI-9B"))
Function calling-bete
import json
import logging
from webscout import LLAMA3, WEBS
from webscout.Agents.functioncall import FunctionCallingAgent
# Define tools that the agent can use
tools = [
{
"type": "function",
"function": {
"name": "UserDetail",
"parameters": {
"type": "object",
"title": "UserDetail",
"properties": {
"name": {
"title": "Name",
"type": "string"
},
"age": {
"title": "Age",
"type": "integer"
}
},
"required": ["name", "age"]
}
}
},
{
"type": "function",
"function": {
"name": "web_search",
"description": "Search query on google",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "web search query"
}
},
"required": ["query"]
}
}
},
{ # New general AI tool
"type": "function",
"function": {
"name": "general_ai",
"description": "Use general AI knowledge to answer the question",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "The question to answer"
}
},
"required": ["question"]
}
}
}
]
# Initialize the FunctionCallingAgent with the specified tools
agent = FunctionCallingAgent(tools=tools)
llama = LLAMA3()
from rich import print
# Input message from the user
user = input(">>> ")
message = user
function_call_data = agent.function_call_handler(message)
print(f"Function Call Data: {function_call_data}")
# Check for errors in the function call data
if "error" not in function_call_data:
function_name = function_call_data.get("tool_name") # Use 'tool_name' instead of 'name'
if function_name == "web_search":
arguments = function_call_data.get("tool_input", {}) # Get tool input arguments
query = arguments.get("query")
if query:
with WEBS() as webs:
search_results = webs.text(query, max_results=5)
prompt = (
f"Based on the following search results:\n\n{search_results}\n\n"
f"Question: {user}\n\n"
"Please provide a comprehensive answer to the question based on the search results above. "
"Include relevant webpage URLs in your answer when appropriate. "
"If the search results don't contain relevant information, please state that and provide the best answer you can based on your general knowledge."
)
response = llama.chat(prompt)
for c in response:
print(c, end="", flush=True)
else:
print("Please provide a search query.")
elif function_name == "general_ai": # Handle general AI tool
arguments = function_call_data.get("tool_input", {})
question = arguments.get("question")
if question:
response = llama.chat(question) # Use LLM directly
for c in response:
print(c, end="", flush=True)
else:
print("Please provide a question.")
else:
result = agent.execute_function(function_call_data)
print(f"Function Execution Result: {result}")
else:
print(f"Error: {function_call_data['error']}")
LLAMA3, pizzagpt, RUBIKSAI, Koala, Darkai, AI4Chat, Farfalle
code similar to other provider
LLM
from webscout.LLM import LLM
# Read the system message from the file
with open('system.txt', 'r') as file:
system_message = file.read()
# Initialize the LLM class with the model name and system message
llm = LLM(model="microsoft/WizardLM-2-8x22B", system_message=system_message)
while True:
# Get the user input
user_input = input("User: ")
# Define the messages to be sent
messages = [
{"role": "user", "content": user_input}
]
# Use the mistral_chat method to get the response
response = llm.chat(messages)
# Print the response
print("AI: ", response)
Local-LLM
Webscout can now run GGUF models locally. You can download and run your favorite models with minimal configuration.
Example:
from webscout.Local.utils import download_model
from webscout.Local.model import Model
from webscout.Local.thread import Thread
from webscout.Local import formats
# 1. Download the model
repo_id = "microsoft/Phi-3-mini-4k-instruct-gguf" # Replace with the desired Hugging Face repo
filename = "Phi-3-mini-4k-instruct-q4.gguf" # Replace with the correct filename
model_path = download_model(repo_id, filename, token="")
# 2. Load the model
model = Model(model_path, n_gpu_layers=4)
# 3. Create a Thread for conversation
thread = Thread(model, formats.phi3)
# 4. Start interacting with the model
thread.interact()
Local-rawdog
Webscout's local raw-dog feature allows you to run Python scripts within your terminal prompt.
Example:
import webscout.Local as ws
from webscout.Local.rawdog import RawDog
from webscout.Local.samplers import DefaultSampling
from webscout.Local.formats import chatml, AdvancedFormat
from webscout.Local.utils import download_model
import datetime
import sys
import os
repo_id = "YorkieOH10/granite-8b-code-instruct-Q8_0-GGUF"
filename = "granite-8b-code-instruct.Q8_0.gguf"
model_path = download_model(repo_id, filename, token='')
# Load the model using the downloaded path
model = ws.Model(model_path, n_gpu_layers=10)
rawdog = RawDog()
# Create an AdvancedFormat and modify the system content
# Use a lambda to generate the prompt dynamically:
chat_format = AdvancedFormat(chatml)
# **Pre-format the intro_prompt string:**
system_content = f"""
You are a command-line coding assistant called Rawdog that generates and auto-executes Python scripts.
A typical interaction goes like this:
1. The user gives you a natural language PROMPT.
2. You:
i. Determine what needs to be done
ii. Write a short Python SCRIPT to do it
iii. Communicate back to the user by printing to the console in that SCRIPT
3. The compiler extracts the script and then runs it using exec(). If there will be an exception raised,
it will be send back to you starting with "PREVIOUS SCRIPT EXCEPTION:".
4. In case of exception, regenerate error free script.
If you need to review script outputs before completing the task, you can print the word "CONTINUE" at the end of your SCRIPT.
This can be useful for summarizing documents or technical readouts, reading instructions before
deciding what to do, or other tasks that require multi-step reasoning.
A typical 'CONTINUE' interaction looks like this:
1. The user gives you a natural language PROMPT.
2. You:
i. Determine what needs to be done
ii. Determine that you need to see the output of some subprocess call to complete the task
iii. Write a short Python SCRIPT to print that and then print the word "CONTINUE"
3. The compiler
i. Checks and runs your SCRIPT
ii. Captures the output and appends it to the conversation as "LAST SCRIPT OUTPUT:"
iii. Finds the word "CONTINUE" and sends control back to you
4. You again:
i. Look at the original PROMPT + the "LAST SCRIPT OUTPUT:" to determine what needs to be done
ii. Write a short Python SCRIPT to do it
iii. Communicate back to the user by printing to the console in that SCRIPT
5. The compiler...
Please follow these conventions carefully:
- Decline any tasks that seem dangerous, irreversible, or that you don't understand.
- Always review the full conversation prior to answering and maintain continuity.
- If asked for information, just print the information clearly and concisely.
- If asked to do something, print a concise summary of what you've done as confirmation.
- If asked a question, respond in a friendly, conversational way. Use programmatically-generated and natural language responses as appropriate.
- If you need clarification, return a SCRIPT that prints your question. In the next interaction, continue based on the user's response.
- Assume the user would like something concise. For example rather than printing a massive table, filter or summarize it to what's likely of interest.
- Actively clean up any temporary processes or files you use.
- When looking through files, use git as available to skip files, and skip hidden files (.env, .git, etc) by default.
- You can plot anything with matplotlib.
- ALWAYS Return your SCRIPT inside of a single pair of ``` delimiters. Only the console output of the first such SCRIPT is visible to the user, so make sure that it's complete and don't bother returning anything else.
"""
chat_format.override('system_content', lambda: system_content)
thread = ws.Thread(model, format=chat_format, sampler=DefaultSampling)
while True:
prompt = input(">: ")
if prompt.lower() == "q":
break
response = thread.send(prompt)
# Process the response using RawDog
script_output = rawdog.main(response)
if script_output:
print(script_output)
GGUF
Webscout provides tools to convert and quantize Hugging Face models into the GGUF format for use with offline LLMs.
Example:
from webscout import gguf
"""
Valid quantization methods:
"q2_k", "q3_k_l", "q3_k_m", "q3_k_s",
"q4_0", "q4_1", "q4_k_m", "q4_k_s",
"q5_0", "q5_1", "q5_k_m", "q5_k_s",
"q6_k", "q8_0"
"""
gguf.convert(
model_id="OEvortex/HelpingAI-Lite-1.5T", # Replace with your model ID
username="Abhaykoul", # Replace with your Hugging Face username
token="hf_token_write", # Replace with your Hugging Face token
quantization_methods="q4_k_m" # Optional, adjust quantization methods
)
Autollama
Webscout's autollama
utility download model from huggingface and then automatically makes it ollama ready
Example:
from webscout import autollama
autollama(
model_path="OEvortex/HelpingAI-Lite-1.5T", # Hugging Face model ID
gguf_file="HelpingAI-Lite-1.5T.q4_k_m.gguf" # GGUF file ID
)
Command Line Usage:
-
GGUF Conversion:
python -m webscout.Extra.gguf -m "OEvortex/HelpingAI-Lite-1.5T" -u "your_username" -t "your_hf_token" -q "q4_k_m,q5_k_m"
-
Autollama:
python -m webscout.Extra.autollama -m "OEvortex/HelpingAI-Lite-1.5T" -g "HelpingAI-Lite-1.5T.q4_k_m.gguf"
Note:
- Replace
"your_username"
and"your_hf_token"
with your actual Hugging Face credentials. - The
model_path
inautollama
is the Hugging Face model ID, andgguf_file
is the GGUF file ID.
Webai
- terminal gpt and a open interpeter
```shell
python -m webscout.webai webai --provider "phind" --rawdog
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file webscout-4.8.tar.gz
.
File metadata
- Download URL: webscout-4.8.tar.gz
- Upload date:
- Size: 204.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6abc908564362cc83f2d397bc35f6db5236451654c16d875a52ad820c957860 |
|
MD5 | c6ef295c11262aeb9dc709fb9a7e70c2 |
|
BLAKE2b-256 | a02da5cd8b55b7849326f2b2d0e9beb1878f4d31b352d5849b6678ecce960396 |
File details
Details for the file webscout-4.8-py3-none-any.whl
.
File metadata
- Download URL: webscout-4.8-py3-none-any.whl
- Upload date:
- Size: 236.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d6d9f77dceffa63b859af2fda5c241e8f3d3e8272a9b2c13c26dc7f20339b864 |
|
MD5 | 49b5841c65599d7d9d3ea17974f55ee1 |
|
BLAKE2b-256 | 9b7ed12b7ed901b5826f7513247b9ff156f13bcfcf5e0bfa5d022832f15c2ef2 |