Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.
Project description
wechsel
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.
Example usage
Transferring English roberta-base
to Swahili:
import torch
from transformers import AutoModel, AutoTokenizer
from datasets import load_dataset
from wechsel import WECHSEL, load_embeddings
source_tokenizer = AutoTokenizer.from_pretrained("roberta-base")
model = AutoModel.from_pretrained("roberta-base")
target_tokenizer = source_tokenizer.train_new_from_iterator(
load_dataset("oscar", "unshuffled_deduplicated_sw", split="train")["text"],
vocab_size=len(source_tokenizer)
)
wechsel = WECHSEL(
load_embeddings("en"),
load_embeddings("sw"),
bilingual_dictionary="swahili"
)
target_embeddings, info = wechsel.apply(
source_tokenizer,
target_tokenizer,
model.get_input_embeddings().weight.detach().numpy(),
)
model.get_input_embeddings().weight.data = torch.from_numpy(target_embeddings)
# use `model` and `target_tokenizer` to continue training in Swahili!
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
wechsel-0.0.1.tar.gz
(2.4 kB
view details)
File details
Details for the file wechsel-0.0.1.tar.gz
.
File metadata
- Download URL: wechsel-0.0.1.tar.gz
- Upload date:
- Size: 2.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 76ec08b483520aa6782d1a6045563f2b741cf22e1eb64471cc81557d4b81e16b |
|
MD5 | 5bf55ed42a4cc1744982116842d6012b |
|
BLAKE2b-256 | 9da9568ef34908f5471d750969320b15ebc47d168bf0bdf404552a5e3f29f5f9 |