Skip to main content

Python (numpy) implementation of Welford's algorithm.

Project description

Python (Numpy) implementation of Welford’s algorithm, which is online or parallel algorithm for calculating variances.

The algorithm is described in the followings,

Welford’s method is more numerically stable than the standard method. The theoritical background of Welford’s method is mentioned in detail on the following blog articles. Please refer them if you are interested in.

This library is inspired by the jvf’s implementation, which is implemented without using numpy library.

Install

Download package via PyPI repository

$ pip install welford

Example

For Online Calculation

import numpy as np
from welford import Welford

# Initialize Welford object
w = Welford()

# Input data samples sequentialy
w.add(np.array([0, 100]))
w.add(np.array([1, 110]))
w.add(np.array([2, 120]))

# output
print(w.mean)  # mean --> [  1. 110.]
print(w.var_s)  # sample variance --> [1, 100]
print(w.var_p)  # population variance --> [ 0.6666 66.66]

# You can add other samples after calculating variances.
w.add(np.array([3, 130]))
w.add(np.array([4, 140]))

# output with added samples
print(w.mean)  # mean --> [  2. 120.]
print(w.var_s)  # sample variance --> [  2.5 250. ]
print(w.var_p)  # population variance --> [  2. 200.]

Welford object supports initialization with data samples and batch addition of samples.

# Initialize Welford object with samples
ini = np.array([[0, 100],
                [1, 110],
                [2, 120]])
w = Welford(ini)

# output
print(w.mean)  # mean --> [  1. 110.]
print(w.var_s)  # sample variance --> [1, 100]
print(w.var_p)  # population variance --> [ 0.66666667 66.66666667]

# add other samples through batch method
other_samples = np.array([[3, 130],
                          [4, 140]])
w.add_all(other_samples)

# output with added samples
print(w.mean)  # mean --> [  2. 120.]
print(w.var_s)  # sample variance --> [  2.5 250. ]
print(w.var_p)  # population variance --> [  2. 200.]

For Parallel Calculation

Welford also offers parallel calculation method for variance.

import numpy as np
from welford import Welford

# Initialize two Welford objects
w_1 = Welford()
w_2 = Welford()

# Each object will calculate variance of each samples in parallel.
# On w_1
w_1.add(np.array([0, 100]))
w_1.add(np.array([1, 110]))
w_1.add(np.array([2, 120]))
print(w_1.var_s)  # sample variance -->[  1. 100.]
print(w_1.var_p)  # population variance -->[ 0.66666667 66.66666667]

# On w_2
w_2.add(np.array([3, 130]))
w_2.add(np.array([4, 140]))
print(w_2.var_s)  # sample variance -->[ 0.5 50. ]
print(w_2.var_p)  # sample variance -->[ 0.25 25.  ]

# You can Merge objects to get variance of WHOLE samples
w_1.merge(w_2)
print(w.var_s)  # sample variance --> [  2.5 250. ]
print(w_1.var_p)  # sample variance -->[  2. 200.]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

welford-0.2.5.tar.gz (5.1 kB view details)

Uploaded Source

File details

Details for the file welford-0.2.5.tar.gz.

File metadata

  • Download URL: welford-0.2.5.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for welford-0.2.5.tar.gz
Algorithm Hash digest
SHA256 f0dedc139528c027c0331b0d254b6542bfa0a6782996bd3efe6c7b191ffb5116
MD5 5108c9e78fc3b482d5e783c8d604e94f
BLAKE2b-256 114a1074e17e6fa5ee23b18772d570bf90eb90dde5e0b49e5c7e065272b7a6fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page