Skip to main content

Toolkit for encapsulating Python-based computation into deployable and distributable tasks

Project description

werkit

version python versions license build code style

Toolkit for encapsulating Python-based computation into deployable and distributable tasks.

Provides code that helps package things up:

  • Serializing results
  • Handling and serializing errors
  • Deploying task workers using Redis, RQ and the Fargate CLI

They're particularly useful for providing repsonse consistency across different revisions of a service or different services.

Installation

pip install werkit

Usage

from werkit import Manager

def myfunc(param, verbose=False, handle_exceptions=True):
    with Manager(handle_exceptions=handle_exceptions, verbose=verbose) as manager:
        manager.result = do_some_computation()
    return manager.serialized_result

Parallel computation

Werkit supports parallel computation using Redis and RQ.

You must install the dependencies separately:

pip install redis rq

Requesting work

from mylib import myfunc
from werkit.parallel import invoke_for_each


items = {'a': ..., 'b': ...}
job_ids = invoke_for_each(myfunc, items, connection=Redis.from_url(...))

Performing work

pip install redis rq
rq worker --burst werkit-default --url rediss://...

Note: mylib.myfunc must be importable.

Using CloudManager

In place of the low-level API you can make your calls using CloudManager:

#!/usr/bin/env python


import click
from werkit.parallel import Config, CloudManager, invoke_for_each

manager = CloudManager(
    config=Config(
        local_repository="my-project",
        ecr_repository="123456789012.dkr.ecr.us-east-1.amazonaws.com/my-project",
        ecs_task_name="my-project",
        task_args=[
            "--cpu",
            "1024",
            "--memory",
            "2048",
            "--task-role",
            "arn:aws:iam::123456789012:role/...",
            "--security-group-id",
            "sg-...",
            "--subnet-id",
            "subnet-...",
        ],
        default_task_count=5,
    )
)


@click.group()
def cli():
    pass


@cli.command()
def login():
    manager.login()


@cli.command()
@click.argument("tag")
def build_and_push(tag):
    manager.build_and_push()


@cli.command()
def enqueue():
    from myproject import myfunc

    items = {"key1": "value1", "key2": "value2"}

    invoke_for_each(
        measure_body,
        items,
        clean=True,
        connection=manager.redis_connection,
    )


@cli.command()
@click.option(
    "--count",
    default=manager.config.default_task_count,
    type=int,
    help="Number of tasks to run",
)
@click.argument("tag")
def run(count, tag):
    manager.run(tag=tag, count=count)


@cli.command()
def dashboard():
    manager.dashboard()


@cli.command()
def ps():
    manager.ps()


@cli.command()
def get_results():
    print(manager.get_results())


@cli.command()
def clean():
    manager.clean()


if __name__ == "__main__":
    cli()

Getting results

from redis import Redis
from werkit.parallel import get_results


get_results(wait_until_done=True, connection=Redis.from_url(...))

Monitoring

You can monitor your queues using RQ Dashboard or one of the other methods outlined here.

Parallel computation on AWS lambda

Werkit also implements a parallel map on AWS lambda.

Werkit comes with a default lambda handler, that accepts an event of the form {"input":[a, b, ...],"extra_args":[c, d, ...]}. Werkit invokes a lambda function in parallel for every item in input, with an event of the form {"input": a, "extra_args":[c, d, ...]}.

The werkit default handler is configurable via the following environmnent variables:

  • LAMBDA_WORKER_FUNCTION_NAME: Name of the lambda worker function to invoke
  • LAMBDA_WORKER_TIMEOUT: How long to wait in seconds for the lambda worker function to return before returning a TimeoutError

Contribute

Pull requests welcome!

Support

If you are having issues, please let us know.

License

The project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

werkit-0.10.0.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

werkit-0.10.0-py3-none-any.whl (20.0 kB view details)

Uploaded Python 3

File details

Details for the file werkit-0.10.0.tar.gz.

File metadata

  • Download URL: werkit-0.10.0.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.7.5

File hashes

Hashes for werkit-0.10.0.tar.gz
Algorithm Hash digest
SHA256 ec9141a73d39fa3650caacc630c4d5f36efa79eb17b44854e0f08e4bdc0c452d
MD5 16e20579a363aee3df554af8a3636901
BLAKE2b-256 623c6c3a68cf193fd3d732e138b37d3b48e341071043a9fdd791bf068660300c

See more details on using hashes here.

File details

Details for the file werkit-0.10.0-py3-none-any.whl.

File metadata

  • Download URL: werkit-0.10.0-py3-none-any.whl
  • Upload date:
  • Size: 20.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.7.5

File hashes

Hashes for werkit-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8ac804a57c4fef5bb3b62d92588f1df19ea01dd3a5490781778cf7ec6d7b9748
MD5 0061e1d7010fc9e0b85f596047798896
BLAKE2b-256 0f8e63bb0d39e431df27f5764a95adaa78171cea1863f65dae88fdee7bd04266

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page