Skip to main content

Open weather data for humans

Project description

Wetterdienst - Open weather data for humans

German weather stations managed by Deutscher Wetterdienst temperature timeseries of Hohenpeissenberg/Germany warming stripes of Hohenpeissenberg/Germany

“What do we want? Climate Justice! When do we want it? Now!” - FFF

WARNING

This library is a work in progress!

Breaking changes should be expected until a 1.0 release, so version pinning is recommended.

CI

CI: Overall outcome Documentation status CI: Code coverage

Meta

PyPI version Conda version Project license Project status (alpha, beta, stable) Python version compatibility

Downloads

PyPI downloads Conda downloads

Citation

Citation reference

Introduction

Overview

Welcome to Wetterdienst, your friendly weather service library for Python.

We are a group of like-minded people trying to make access to weather data in Python feel like a warm summer breeze, similar to other projects like rdwd for the R language, which originally drew our interest in this project. Our long-term goal is to provide access to multiple weather services as well as other related agencies such as river measurements. With wetterdienst we try to use modern Python technologies all over the place. The library is based on polars (we <3 pandas, it is still part of some IO processes) across the board, uses uv for package administration and GitHub Actions for all things CI. Our users are an important part of the development as we are not currently using the data we are providing and only implement what we think would be the best. Therefore contributions and feedback whether it be data related or library related are very welcome! Just hand in a PR or Issue if you think we should include a new feature or data source.

Data

For an overview of the data we have currently made available and under which license it is published take a look at the data section. Detailed information on datasets and parameters is given at the coverage subsection. Licenses and usage requirements may differ for each provider so check this out before including the data in your project to be sure that you fulfill copyright requirements!

Features

  • APIs for stations and values

  • Get stations nearby a selected location

  • Define your request by arguments such as parameter, period, resolution, start date, end date

  • Define general settings in Settings context

  • Command line interface

  • Web-API via FastAPI, hosted on wetterdienst.eobs.org

  • Rich UI features like explorer, stripes

  • Run SQL queries on the results

  • Export results to databases and other data sinks

  • Public Docker image

  • Interpolation and Summary of station values

Setup

Native

Via PyPi (standard):

pip install wetterdienst

Via Github (most recent):

pip install git+https://github.com/earthobservations/wetterdienst

There are some extras available for wetterdienst. Use them like:

pip install wetterdienst[sql]
  • docs: Install the Sphinx documentation generator.

  • ipython: Install iPython stack.

  • export: Install openpyxl for Excel export and pyarrow for writing files in Feather- and Parquet-format.

  • sql: Install DuckDB for querying data using SQL.

  • duckdb: Install support for DuckDB.

  • influxdb: Install support for InfluxDB.

  • cratedb: Install support for CrateDB.

  • mysql: Install support for MySQL.

  • postgresql: Install support for PostgreSQL.

  • interpolation: Install support for station interpolation.

In order to check the installation, invoke:

wetterdienst --help

Docker

Docker images for each stable release will get pushed to GitHub Container Registry.

wetterdienst serves a full environment, including all of the optional dependencies of Wetterdienst.

Pull the Docker image:

docker pull ghcr.io/earthobservations/wetterdienst
Library

Use the latest stable version of wetterdienst:

$ docker run -ti ghcr.io/earthobservations/wetterdienst
Python 3.8.5 (default, Sep 10 2020, 16:58:22)
[GCC 8.3.0] on linux
import wetterdienst
wetterdienst.__version__
Command line script

The wetterdienst command is also available:

# Make an alias to use it conveniently from your shell.
alias wetterdienst='docker run -ti ghcr.io/earthobservations/wetterdienst wetterdienst'

wetterdienst --help
wetterdienst --version
wetterdienst info

Raspberry Pi / LINUX ARM

Running wetterdienst on Raspberry Pi, you need to install numpy and lxml prior to installing wetterdienst by running the following lines:

# not all installations may be required to get lxml running
sudo apt-get install gfortran
sudo apt-get install libopenblas-base
sudo apt-get install libopenblas-dev
sudo apt-get install libatlas-base-dev
sudo apt-get install python3-lxml

Additionally expanding the Swap to 2048 mb may be required and can be done via swap-file:

sudo nano /etc/dphys-swapfile

Thanks chr-sto for reporting back to us!

Example

Task: Get historical climate summary for two German stations between 1990 and 2020

Library

>>> import polars as pl
>>> _ = pl.Config.set_tbl_hide_dataframe_shape(True)
>>> from wetterdienst import Settings
>>> from wetterdienst.provider.dwd.observation import DwdObservationRequest
>>> settings = Settings( # default
...     ts_shape="long",  # tidy data
...     ts_humanize=True,  # humanized parameters
...     ts_si_units=True  # convert values to SI units
... )
>>> request = DwdObservationRequest(
...    parameter="climate_summary",
...    resolution="daily",
...    start_date="1990-01-01",  # if not given timezone defaulted to UTC
...    end_date="2020-01-01",  # if not given timezone defaulted to UTC
...    settings=settings
... ).filter_by_station_id(station_id=(1048, 4411))
>>> stations = request.df
>>> stations.head()
┌────────────┬──────────────┬──────────────┬──────────┬───────────┬────────┬─────────────┬─────────┐
 station_id  start_date    end_date      latitude  longitude  height  name         state   
 ---         ---           ---           ---       ---        ---     ---          ---     
 str         datetime[μs,  datetime[μs,  f64       f64        f64     str          str     
             UTC]          UTC]                                                            
╞════════════╪══════════════╪══════════════╪══════════╪═══════════╪════════╪═════════════╪═════════╡
 01048       1934-01-01    ...           51.1278   13.7543    228.0   Dresden-Klo  Sachsen 
             00:00:00 UTC  00:00:00 UTC                               tzsche               
 04411       1979-12-01    ...           49.9195   8.9672     155.0   Schaafheim-  Hessen  
             00:00:00 UTC  00:00:00 UTC                               Schlierbach          
└────────────┴──────────────┴──────────────┴──────────┴───────────┴────────┴─────────────┴─────────┘
>>> values = request.values.all().df
>>> values.head()
┌────────────┬─────────────────┬───────────────────┬─────────────────────────┬───────┬─────────┐
 station_id  dataset          parameter          date                     value  quality 
 ---         ---              ---                ---                      ---    ---     
 str         str              str                datetime[μs, UTC]        f64    f64     
╞════════════╪═════════════════╪═══════════════════╪═════════════════════════╪═══════╪═════════╡
 01048       climate_summary  cloud_cover_total  1990-01-01 00:00:00 UTC  100.0  10.0    
 01048       climate_summary  cloud_cover_total  1990-01-02 00:00:00 UTC  100.0  10.0    
 01048       climate_summary  cloud_cover_total  1990-01-03 00:00:00 UTC  91.25  10.0    
 01048       climate_summary  cloud_cover_total  1990-01-04 00:00:00 UTC  28.75  10.0    
 01048       climate_summary  cloud_cover_total  1990-01-05 00:00:00 UTC  91.25  10.0    
└────────────┴─────────────────┴───────────────────┴─────────────────────────┴───────┴─────────┘
values.to_pandas() # to get a pandas DataFrame and e.g. create some matplotlib plots

Client

# Get list of all stations for daily climate summary data in JSON format
wetterdienst stations --provider=dwd --network=observation --parameter=kl --resolution=daily --all

# Get daily climate summary data for specific stations
wetterdienst values --provider=dwd --network=observation --station=1048,4411 --parameter=kl --resolution=daily

Further examples (code samples) can be found in the examples folder.

Acknowledgements

We want to acknowledge all environmental agencies which provide their data open and free of charge first and foremost for the sake of endless research possibilities.

We want to acknowledge Jetbrains and the Jetbrains OSS Team for providing us with licenses for Pycharm Pro, which we are using for the development.

We want to acknowledge all contributors for being part of the improvements to this library that make it better and better every day.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wetterdienst-0.97.0.tar.gz (189.1 kB view details)

Uploaded Source

Built Distribution

wetterdienst-0.97.0-py3-none-any.whl (227.2 kB view details)

Uploaded Python 3

File details

Details for the file wetterdienst-0.97.0.tar.gz.

File metadata

  • Download URL: wetterdienst-0.97.0.tar.gz
  • Upload date:
  • Size: 189.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for wetterdienst-0.97.0.tar.gz
Algorithm Hash digest
SHA256 77c3786e45ace470301807f133c4340e9a898afe62cd3054ee2097f73e5d4293
MD5 905a98404c23ddca5b79c9df0c388d85
BLAKE2b-256 299301c24c36bd669806b8eaa10366f6a9035f53834e37835fb2a5f38e218c14

See more details on using hashes here.

File details

Details for the file wetterdienst-0.97.0-py3-none-any.whl.

File metadata

File hashes

Hashes for wetterdienst-0.97.0-py3-none-any.whl
Algorithm Hash digest
SHA256 76feb7dbea44104a558b232efa7605212188bcdcd0fdbcd4535c47384bc77cbd
MD5 f9c3da567b131d6912dce3b9a49c6f15
BLAKE2b-256 25d59386d0ff12c406664a4318a24c445202b35baef0c98eb462bdd5c3afa933

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page