No project description provided
Project description
Rappi's WFM Team Data Analysis and Forecasting
This Python package provides functionality for data analysis and forecasting for Rappi's Workforce Management (WFM) system.
Installation
You can install the package using pip:
pip install wfrappi
# #The package includes functions for processing and preparing data for analysis.
# importar librerias
from wfrappi import data_processing as dp, modeling, order_distribution as od
import pandas as pd
# definir parametros
month="Agosto"
startdate = "2024-03-01"
FEATURES = ['dayofweek', 'quarter', 'month', 'year', 'dayofyear', 'dayofmonth', 'weekofyear']
year_month="2024-08"
TARGET = "SS" # or "BR"
SERVICE_USER_TYPE="Users"
SERVICE="Customer Live Orders"
REGION="SS" # or "BR"
concurrencia = 2 # concurrencia del servicio
sla = 0.8 # nivel de servicio
meta_aht = 10
date_range=['2023-01-01', '2024-05-31']
df_ordered = dp.read_and_sort_orders(date_range)
csv_path = "C:/Users/jonathan.marin/Documents/GitHub/rappi/wfm/Calendario Rappi - BD_Feriados.csv"
special = pd.read_csv(csv_path)
special=special.filter(['PAIS', 'FERIADO', 'Fecha', 'Criticidad'])
special['Fecha'] = pd.to_datetime(special['Fecha'], format='%d/%m/%Y').dt.date
special = special[special["PAIS"].isin(["CO","MX"])]
special = special[special["Criticidad"] == "Alto"]
special_days = special["Fecha"].to_list()
df_filtered = dp.filter_special_dates(df_ordered, special_days)
orders = dp.pivot_orders(df_filtered,REGION)
data = orders.set_index("FECHA")
train, test = dp.split_train_test_data(data, startdate)
train = dp.create_features(train)
test = dp.create_features(test)
X_train = train[FEATURES]
y_train = train[TARGET]
X_test = test[FEATURES]
y_test = test[TARGET]
model = modeling.train_xgboost_model(X_train, y_train, X_test, y_test)
predictions = modeling.make_predictions(model, X_test)
test['prediction'] = predictions
predictions = dp.create_future_predictions(model, FEATURES, '2024-08-01','2024-08-31', 'D')
month_to_predict = predictions
ordenes_financieras = od.create_ordenes_financieras(df_ordered, month_to_predict, ordenes_aprobadas=None, REGION=REGION , year_month=year_month)
curva_ordenes = od.create_curva_ordenes(df_ordered,REGION)
df3 = od.distribute_orders(ordenes_financieras, curva_ordenes)
print(df3.head())
# ajustar dias de festividades
# valor_a_ajustar = 1.30
# df3.loc[df3["FECHA"] == "2024-08-07", "CO"] *= valor_a_ajustar
inflow = dp.read_cr_aht(date_range)
result=od.distribute_inflow_intraday(inflow, df3, SERVICE_USER_TYPE, SERVICE, REGION)
result2 = od.distribute_aht_intraday(inflow, df3, SERVICE_USER_TYPE, SERVICE,REGION, result, meta_aht)
required_headcount_df = od.hc(result,result2,sla, concurrencia)
print(required_headcount_df.head(1))
print("Done!")
# License
# This project is licensed under a private license by Rappi Inc. Unauthorized copying, distribution, or modification of this project, via any medium, is strictly prohibited. For more details, please contact the legal department at Rappi.
## Contact Information
# For licensing inquiries, please reach out to:
# * **Email: legal@rappi.com**
# © 2024 Rappi Inc. Todos los derechos reservados
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file wfm_rappi_co-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: wfm_rappi_co-0.1.0-py3-none-any.whl
- Upload date:
- Size: 13.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 239c950f0044d17a5184e004d5f88dee88e9bedc4f55fe2b6f24754801eca2ce |
|
MD5 | 88c8f81166fbc2785857de90afebfba6 |
|
BLAKE2b-256 | 7215cbc3bd3f94d1aa81d56d9c58a996487fee713460f4f4cec956a0c8910fa4 |