Skip to main content

wfnsympy

Project description

The author of this package has not provided a project description

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wfnsympy-0.3.5.tar.gz (67.3 kB view details)

Uploaded Source

Built Distributions

wfnsympy-0.3.5-cp310-cp310-win_amd64.whl (950.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

wfnsympy-0.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

wfnsympy-0.3.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

wfnsympy-0.3.5-cp310-cp310-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

wfnsympy-0.3.5-cp39-cp39-win_amd64.whl (950.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

wfnsympy-0.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

wfnsympy-0.3.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

wfnsympy-0.3.5-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

wfnsympy-0.3.5-cp38-cp38-win_amd64.whl (949.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

wfnsympy-0.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

wfnsympy-0.3.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

wfnsympy-0.3.5-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

wfnsympy-0.3.5-cp37-cp37m-win_amd64.whl (949.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

wfnsympy-0.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

wfnsympy-0.3.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

wfnsympy-0.3.5-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

wfnsympy-0.3.5-cp36-cp36m-win_amd64.whl (950.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

wfnsympy-0.3.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

wfnsympy-0.3.5-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

wfnsympy-0.3.5-cp36-cp36m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file wfnsympy-0.3.5.tar.gz.

File metadata

  • Download URL: wfnsympy-0.3.5.tar.gz
  • Upload date:
  • Size: 67.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for wfnsympy-0.3.5.tar.gz
Algorithm Hash digest
SHA256 f1bede9d9e4efdc79e2a1a4f62b02bd7758908ce6bf91a2641150e0f65c32a6c
MD5 fd9d6dcfb00b0f69f26dbf87b94e3b0e
BLAKE2b-256 a284536b674875c1a383c3cad2365343f940f341f7e04a51a44a3c208751f662

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: wfnsympy-0.3.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 950.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for wfnsympy-0.3.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a881d2c91d15a469db88a658640b6a3a3fa32a3bc3a118a193313da742abf6f3
MD5 ec74401d26c8c7f63d2fc2a3934c50ab
BLAKE2b-256 39e05cf6975db5b49e924e6985ad530188342737e7984f0f539091c7e6b737e9

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13e78fc495aa1240a0c8afbd77e1082ec14da44f5dc27d969e397d20d2425254
MD5 4ca2f88a4081a67bc79970bf2fbe5eae
BLAKE2b-256 8ee7a1a1a241496e0bccf9320d97a597b67b3127ceb2e5495f9ab70a7731e4e7

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 73815df8a2f076de4cdeeedacac029debb4cf4a83a23c2049a65b81b58416e8e
MD5 eb89388fd73e8243346436e77232fd37
BLAKE2b-256 9f9e118a699a4a42d9645f11dd1653fc8d43b208c752b8dd6e823b3e1953c62e

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5921815a6965a3bbe8ee5493bd46aa66909345e42ca16d33ff8d3e1002201414
MD5 4422b62d6ca7348b42f8a5b6d3723a45
BLAKE2b-256 3934b3ddb9762311f9b6b524d6e7f08eeff49fb8bbd3027f7ef8d7dd115aec8e

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: wfnsympy-0.3.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 950.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for wfnsympy-0.3.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5b8c593269de46a2ba3a1c845b8e1e800ebd6dfbbd17d18e3d30ec6554400732
MD5 2a07055a1bac7c58216a79eb987d577e
BLAKE2b-256 f938be7505e1b2c65e6309c738bfb187915574675537410788764c31252f4b3c

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0ce405711123cb9d32faa83ed680429283f20e2cc433c442cb535d9e5cf2a4e
MD5 003826355610e4232262e02340d7246f
BLAKE2b-256 f566e4005043fe0df8edf3f252fe1fc9970597e224a66779fc69d77e4c30e451

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b5816b4799ab3a3d324eb01d1537a62422c902f4ca42e61a9348ff1cb9d3dfa1
MD5 3ba614bf467b023f3b4c0b1189905bba
BLAKE2b-256 d96decbee90f3b0d504e3613146b76e4c0735704cb384e33dba2f7ee93247541

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb0e33ace08accd2f246ccaf367319c83d44a614247a6bf5cc6091e5aae42598
MD5 fc5bb10d0245d19473337895c50d498d
BLAKE2b-256 b38613aa91a2c21eb8dedd4ce8e6ea7f64c86f45603de6ded3430cb17d4b9579

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: wfnsympy-0.3.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 949.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for wfnsympy-0.3.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2496004987ee1bdb8c2c1ae7a4182e27fad7defaa76eac932ac608d1c66c4d3b
MD5 1f377154291d98cce9cf01321bc0363f
BLAKE2b-256 fa20a5dd9bf96717dc0af2469d9a1dde42a8285a32d7a87fed1d13cde5ec149e

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0202c79bc4081d778f6de34235cec82c6e124a2539da3c23a2d9477275b8fdd4
MD5 1015357e1f45820afc6128d3532925d0
BLAKE2b-256 1c3edc76965a02c7bba168dcaaa8208bdc777fd07d676db4447f9434c4a8fede

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 85d9f185423712e2447d3ddcbeed827903a88007ef784cab6e17578916fca8cd
MD5 844ad2b7733ad298e9947e5764d1b524
BLAKE2b-256 832e42eaf367034387f056d28b62e372dec3ac17e367c64fed7fa58bdf60f621

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 71d234da874df8d08126a04b239961f2927622a8ff35e956038d2a9c73ce4e05
MD5 0fc9f8f54860227051d58fec9a507378
BLAKE2b-256 14f4811c647cf3b1e93f8a96c1abd56556430224cf8f6dd423b12f28869253f7

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: wfnsympy-0.3.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 949.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for wfnsympy-0.3.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c3bdb77cce5ba3dde05d2061819ee1604febb462f3698a7ebe7d700b8084a5fb
MD5 1bce9a40800be72f22a6ec36fef7cc51
BLAKE2b-256 66c3ced746d6ab2feba1c103a1895625a6aecfd73552758b5597f3c30b62ffb4

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a64648d8907cb6b7411e349ea9bb9488b3cedbf3f002b8348fbc3e1a063db957
MD5 22f1fbc0cb9563050ebc4b4435a08ec5
BLAKE2b-256 156fddb9b80cfd33271e1aa9120ddd6e5cfddef163691184be1470e19f9b12f2

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 21c48a96adad62eb4d6639762699a650fcad173e7a3097731c038b9faa536629
MD5 21a53f577cd5f22992d98e0eb2c02bce
BLAKE2b-256 0c8003360da77b86e090d71132ef6cd592e4745f184da91fcbc675e015a937e3

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5dc640e7f5a155ae55a32d974ba92f81bc93bc351cc10e2f0ccf4b53a3c78692
MD5 3df868cc0c5ff00b840ebdba072ea96f
BLAKE2b-256 41844f6a0f5051364809d4e26b815d3830110b55287a138ab5f156e25f0454a7

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: wfnsympy-0.3.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 950.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for wfnsympy-0.3.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6f6459bc22d6895e987e9fa2bba5a56b1a22fd8743f7a37e3e11249b76b98f7a
MD5 0dda27af505021e1afd825696a61bab3
BLAKE2b-256 95b76ca3a1b2f27085b7082447a78fa81ea925076a4a97d7ba523c5b583ecea8

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdd6aa4cbca80890af6b4a2172c58884a277846b14b2f64a33cad49648b85fb2
MD5 8fd0dfb88f1f9fb36a42f91380b177be
BLAKE2b-256 93e9a0811f5b5d73252a326fa150926c198e0f9e011a15c4e46b2a598c412637

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a112987c11baebac535f2841a3080af7788786901ea2bf8ed18ebd5516c78e42
MD5 a56ac93f5d2325947287bcd8edaa5f4a
BLAKE2b-256 cb19bda381f1c14a2997df9e0c44660612b5863f897297595e0e1ab7f55a7722

See more details on using hashes here.

File details

Details for the file wfnsympy-0.3.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wfnsympy-0.3.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e5cb61ea1f4a90d8909ce56571ecfca6b829eb2abe753e73ff4ce36e19c5ade
MD5 692fd8229fbba44e6cbf056153620a74
BLAKE2b-256 54f16a26a676491713e2e60b9665f8996d7b9d3f75bd1b8b503f442ae85bd0d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page