Lightning Fast Language Prediction powered by FastText and langid.
Project description
whatlangid
This project is build on top of whatthelang and langid
Why this project exist?
see issue_lang.py
Dependencies
The dependencies can be installed using the requirements.txt file:
$ pip install -r requirements.txt
Install
from github
$ pip install git+https://github.com/bung87/whatlangid
from pypi
$ pip install whatlangid
Basic Usage
Predicting Language using whatlangid
>>> from whatlangid import WhatLangId
>>> wtl = WhatLangId()
>>> wtl.predict_lang("Mother")
'en'
>>> wtl.predict_lang("தாய்")
'ta'
>>> wtl.predict_lang("അമ്മ")
'ml'
>>> wtl.predict_lang("पिता")
'hi'
>>> wtl.predict_pro(["English sentence", "അമ്മ"])
[('en', 0.8848170638084412), ('ml', 0.9535570740699768)]
Batch Prediction is also supported
>>>wtl.predict_lang(["അമ്മ","पिता","teacher"])
['ml','hi','en']
Advanced usage
wtl = WhatLangId(custom_model=abs_path)
use bin version model which is faster and slightly more accurate, but has a file size of 126MB
python -m whatlangid.use_bin
Supported Languages
Supports 176 languages . The ISO codes for the corresponding languages are as below.
af als am an ar arz as ast av az azb ba bar bcl be bg bh bn bo bpy br bs bxr ca cbk
ce ceb ckb co cs cv cy da de diq dsb dty dv el eml en eo es et eu fa fi fr frr fy ga
gd gl gn gom gu gv he hi hif hr hsb ht hu hy ia id ie ilo io is it ja jbo jv ka kk km
kn ko krc ku kv kw ky la lb lez li lmo lo lrc lt lv mai mg mhr min mk ml mn mr mrj ms
mt mwl my myv mzn nah nap nds ne new nl nn no oc or os pa pam pfl pl pms pnb ps pt qu
rm ro ru rue sa sah sc scn sco sd sh si sk sl so sq sr su sv sw ta te tg th tk tl tr
tt tyv ug uk ur uz vec vep vi vls vo wa war wuu xal xmf yi yo yue zh
Model Training Details
Quantized model built using Fasttext. More details present in the fasttext blog
Reference
WhatLangId
is powered by FastText
and langid
Enriching Word Vectors with Subword Information
[1] P. Bojanowski*, E. Grave*, A. Joulin, T. Mikolov, Enriching Word Vectors with Subword Information
@article{bojanowski2016enriching,
title={Enriching Word Vectors with Subword Information},
author={Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas},
journal={arXiv preprint arXiv:1607.04606},
year={2016}
}
Bag of Tricks for Efficient Text Classification
[2] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification
@article{joulin2016bag,
title={Bag of Tricks for Efficient Text Classification},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas},
journal={arXiv preprint arXiv:1607.01759},
year={2016}
}
FastText.zip: Compressing text classification models
[3] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models
@article{joulin2016fasttext,
title={FastText.zip: Compressing text classification models},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas},
journal={arXiv preprint arXiv:1612.03651},
year={2016}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file whatlangid-1.0.11.tar.gz
.
File metadata
- Download URL: whatlangid-1.0.11.tar.gz
- Upload date:
- Size: 790.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/37.0.0 requests-toolbelt/0.8.0 tqdm/4.37.0 CPython/2.7.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d09105f83fcef93185bf3b4f9a1aaf77886b2fefff818b4e3520f0181ca2ddfa |
|
MD5 | e9feabb9763aa2dd5e4b8e6edc18527d |
|
BLAKE2b-256 | ede0293d296e4b8b363ad3759d1d754f33f15a3ad8cd44b1baec8a6599bdcd14 |
File details
Details for the file whatlangid-1.0.11-py3-none-any.whl
.
File metadata
- Download URL: whatlangid-1.0.11-py3-none-any.whl
- Upload date:
- Size: 786.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/37.0.0 requests-toolbelt/0.8.0 tqdm/4.37.0 CPython/2.7.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f852cbc68826ae123f0a6937aaba4985ff4dc75d01a57b5b90da4e4af0487709 |
|
MD5 | c20b44ec1ed14f59fe105c665bce1311 |
|
BLAKE2b-256 | 9dde6c7a11980850f278cc0f6c8f03b1b39731e6455896188d391f02c013858f |