Skip to main content

Lightning Fast Language Prediction powered by FastText and langid.

Project description

whatlangid

Build Status PyPI

This project is build on top of whatthelang and langid

Why this project exist?

see issue_lang.py

Dependencies

The dependencies can be installed using the requirements.txt file:

$ pip install -r requirements.txt

Install

from github

$ pip install  git+https://github.com/bung87/whatlangid  

from pypi

$ pip install  whatlangid  

Basic Usage

Predicting Language using whatlangid

>>> from whatlangid import WhatLangId
>>> wtl = WhatLangId()
>>> wtl.predict_lang("Mother")
'en'
>>> wtl.predict_lang("தாய்")
'ta'
>>> wtl.predict_lang("അമ്മ")
'ml'
>>> wtl.predict_lang("पिता")
'hi'
>>> wtl.predict_pro(["English sentence", "അമ്മ"])
[('en', 0.8848170638084412), ('ml', 0.9535570740699768)]

Batch Prediction is also supported

>>>wtl.predict_lang(["അമ്മ","पिता","teacher"])
['ml','hi','en']

Advanced usage

wtl = WhatLangId(custom_model=abs_path)

use bin version model which is faster and slightly more accurate, but has a file size of 126MB

python -m whatlangid.use_bin

Supported Languages

Supports 176 languages . The ISO codes for the corresponding languages are as below.

af als am an ar arz as ast av az azb ba bar bcl be bg bh bn bo bpy br bs bxr ca cbk
ce ceb ckb co cs cv cy da de diq dsb dty dv el eml en eo es et eu fa fi fr frr fy ga
gd gl gn gom gu gv he hi hif hr hsb ht hu hy ia id ie ilo io is it ja jbo jv ka kk km
kn ko krc ku kv kw ky la lb lez li lmo lo lrc lt lv mai mg mhr min mk ml mn mr mrj ms
mt mwl my myv mzn nah nap nds ne new nl nn no oc or os pa pam pfl pl pms pnb ps pt qu
rm ro ru rue sa sah sc scn sco sd sh si sk sl so sq sr su sv sw ta te tg th tk tl tr
tt tyv ug uk ur uz vec vep vi vls vo wa war wuu xal xmf yi yo yue zh

Model Training Details

Quantized model built using Fasttext. More details present in the fasttext blog

Reference

WhatLangId is powered by FastText and langid

Enriching Word Vectors with Subword Information

[1] P. Bojanowski*, E. Grave*, A. Joulin, T. Mikolov, Enriching Word Vectors with Subword Information

@article{bojanowski2016enriching,
  title={Enriching Word Vectors with Subword Information},
  author={Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas},
  journal={arXiv preprint arXiv:1607.04606},
  year={2016}
}

Bag of Tricks for Efficient Text Classification

[2] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification

@article{joulin2016bag,
  title={Bag of Tricks for Efficient Text Classification},
  author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas},
  journal={arXiv preprint arXiv:1607.01759},
  year={2016}
}

FastText.zip: Compressing text classification models

[3] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models

@article{joulin2016fasttext,
  title={FastText.zip: Compressing text classification models},
  author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas},
  journal={arXiv preprint arXiv:1612.03651},
  year={2016}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

whatlangid-1.0.11.tar.gz (790.1 kB view details)

Uploaded Source

Built Distribution

whatlangid-1.0.11-py3-none-any.whl (786.1 kB view details)

Uploaded Python 3

File details

Details for the file whatlangid-1.0.11.tar.gz.

File metadata

  • Download URL: whatlangid-1.0.11.tar.gz
  • Upload date:
  • Size: 790.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/37.0.0 requests-toolbelt/0.8.0 tqdm/4.37.0 CPython/2.7.15

File hashes

Hashes for whatlangid-1.0.11.tar.gz
Algorithm Hash digest
SHA256 d09105f83fcef93185bf3b4f9a1aaf77886b2fefff818b4e3520f0181ca2ddfa
MD5 e9feabb9763aa2dd5e4b8e6edc18527d
BLAKE2b-256 ede0293d296e4b8b363ad3759d1d754f33f15a3ad8cd44b1baec8a6599bdcd14

See more details on using hashes here.

File details

Details for the file whatlangid-1.0.11-py3-none-any.whl.

File metadata

  • Download URL: whatlangid-1.0.11-py3-none-any.whl
  • Upload date:
  • Size: 786.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/37.0.0 requests-toolbelt/0.8.0 tqdm/4.37.0 CPython/2.7.15

File hashes

Hashes for whatlangid-1.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 f852cbc68826ae123f0a6937aaba4985ff4dc75d01a57b5b90da4e4af0487709
MD5 c20b44ec1ed14f59fe105c665bce1311
BLAKE2b-256 9dde6c7a11980850f278cc0f6c8f03b1b39731e6455896188d391f02c013858f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page