Skip to main content

Whisper command line client that uses CTranslate2

Project description

PyPI version PyPI downloads

Introduction

Whisper command line client compatible with original OpenAI client based on CTranslate2.

It uses CTranslate2 and Faster-whisper Whisper implementation that is up to 4 times faster than openai/whisper for the same accuracy while using less memory.

Goals of the project:

  • Provide an easy way to use the CTranslate2 Whisper implementation
  • Ease the migration for people using OpenAI Whisper CLI

Installation

Just type:

pip install -U whisper-ctranslate2

Alternatively, the following command will pull and install the latest commit from this repository, along with its Python dependencies:

pip install git+https://github.com/jordimas/whisper-ctranslate2.git

Usage

Same command line that OpenAI whisper.

To transcribe:

whisper-ctranslate2 inaguracio2011.mp3 --model medium
image

To translate:

whisper-ctranslate2 inaguracio2011.mp3 --model medium --task translate
image

Additionally using:

whisper-ctranslate2 --help

All the supported options with their help are shown.

CTranslate2 specific options

On top of the OpenAI Whisper command line options, there are some specific options provided by CTranslate2 .

--compute_type {default,auto,int8,int8_float16,int16,float16,float32}

Type of quantization to use. On CPU int8 will give the best performance.

--model_directory MODEL_DIRECTORY

Directory where to find a CTranslate Whisper model, for example a fine-tunned Whisper model. The model should be in CTranslate2 format.

--device_index [DEVICE_INDEX ...]

Device IDs where to place this model on

--vad_filter VAD_FILTER

Enable the voice activity detection (VAD) to filter out parts of the audio without speech. This step is using the Silero VAD model https://github.com/snakers4/silero-vad.

--vad_min_silence_duration_ms VAD_MIN_SILENCE_DURATION_MS

When vad_filter is enabled, audio segments without speech for at least this number of milliseconds will be ignored.

Whisper-ctranslate2 specific options

On top of the OpenAI Whisper and CTranslate2, whisper-ctranslate2 provides some additional specific options:

--print-colors PRINT_COLORS

Adding the --print_colors True argument will print the transcribed text using an experimental color coding strategy based on whisper.cpp to highlight words with high or low confidence:

image

Contact

Jordi Mas jmas@softcatala.org

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

whisper-ctranslate2-0.1.4.tar.gz (13.7 kB view details)

Uploaded Source

Built Distribution

whisper_ctranslate2-0.1.4-py3-none-any.whl (14.7 kB view details)

Uploaded Python 3

File details

Details for the file whisper-ctranslate2-0.1.4.tar.gz.

File metadata

  • Download URL: whisper-ctranslate2-0.1.4.tar.gz
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for whisper-ctranslate2-0.1.4.tar.gz
Algorithm Hash digest
SHA256 aa4d6f3e056daa00c91dfa8f3c388c47720bfc29ad7807861e96699db9391b25
MD5 893cb84f3207c3bacacb5cce6bce1c4f
BLAKE2b-256 5bbfd1ab75799057373c29a3011b453a9e4132f766575d7d74e73eeeae364e5f

See more details on using hashes here.

File details

Details for the file whisper_ctranslate2-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for whisper_ctranslate2-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 c44d8696cc5470fe1f31c0b7eabc682ddced2cb8536f618d8d00270e0833671c
MD5 497e47480341f6456ff6b35c46831d99
BLAKE2b-256 3679d72bc3dfb71ab76edbcde0770f5db61de74167cdc48588ba15b062247e1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page