Skip to main content

WHite-box Adversarial Toolbox (WHAT) - Python Library for Deep Learning Security

Project description

WHite-box Adversarial Toolbox (WHAT)

Build Status PyPI version License: MIT PyPI - Python Version

A Python Library for Deep Learning Security that focuses on Real-time White-box Attacks.

Installation

pip install whitebox-adversarial-toolbox

Usage (CLI)

Usage: what [OPTIONS] COMMAND [ARGS]...

  The CLI tool for WHitebox-box Adversarial Toolbox (what).

Options:
  --help  Show this message and exit.

Commands:
  attack   Manage Attacks
  example  Manage Examples
  model    Manage Deep Learning Models

Useful commands:

# List supported models
$ what model list

# List supported Attacks
$ what attack list

# List available examples
$ what example list

Available models:

[x] 1 : YOLOv3      (    Darknet    )   Object Detection        YOLOv3 pretrained on MS COCO dataset.
[x] 2 : YOLOv3      (   Mobilenet   )   Object Detection        YOLOv3 pretrained on MS COCO dataset.
[x] 3 : YOLOv3 Tiny (    Darknet    )   Object Detection        YOLOv3 Tiny pretrained on MS COCO dataset.
[x] 4 : YOLOv3 Tiny (   MobileNet   )   Object Detection        YOLOv3 Tiny pretrained on MS COCO dataset.
[x] 5 : YOLOv4      (    Darknet    )   Object Detection        YOLOv4 pretrained on MS COCO dataset.
[x] 6 : YOLOv4 Tiny (    Darknet    )   Object Detection        YOLOv4 Tiny pretrained on MS COCO dataset.
[x] 7 : SSD         ( MobileNet  v1 )   Object Detection        SSD pretrained on VOC-2012 dataset.
[x] 8 : SSD         ( MobileNet  v2 )   Object Detection        SSD pretrained on VOC-2012 dataset.
[x] 9 : FasterRCNN  (     VGG16     )   Object Detection        Faster-RCNN pretrained on VOC-2012 dataset.
[x] 10 : YOLOX X-Large                  Object Detection        YOLOX-X pretrained on MS COCO dataset.
[x] 11 : YOLOX Large                    Object Detection        YOLOX-L pretrained on MS COCO dataset.
[x] 12 : YOLOX Medium                   Object Detection        YOLOX-M pretrained on MS COCO dataset.
[x] 13 : YOLOX Small                    Object Detection        YOLOX-S pretrained on MS COCO dataset.

A Man-in-the-Middle Hardware Attack

The Universal Adversarial Perturbation (UAP) can be deployed using a Man-in-the-Middle Hardware Attack.

[ Talk ] [ Video ] [ Paper ] [ Code ]

The Man-in-the-Middle Attack consists of two steps:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

whitebox_adversarial_toolbox-0.2.3.tar.gz (134.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file whitebox_adversarial_toolbox-0.2.3.tar.gz.

File metadata

File hashes

Hashes for whitebox_adversarial_toolbox-0.2.3.tar.gz
Algorithm Hash digest
SHA256 bd7ed644ecd35c392dee1332e19971ce80ffa76251774205c12dae0d1408cd22
MD5 e17f7849885b7d4d03dec9efdfc4ba5a
BLAKE2b-256 5dea83b030fa538f1c6409cfefa8a3670eca9a066ba98393b453c481ade70f7d

See more details on using hashes here.

File details

Details for the file whitebox_adversarial_toolbox-0.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for whitebox_adversarial_toolbox-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 81cf516460273b5014f22de8e173e03a333a194389617deb3fb1fe848019705e
MD5 cec598d977da767ec66d46e89fbb508a
BLAKE2b-256 6f862716ac6037596c729eb858d36d7cf96a5ce5f802367518245e28a9d96f16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page