Skip to main content

A Python interface incorporating a C++ implementation of the Whole History Rating algorithm proposed by Rémi Coulom. The implementation is based on the Ruby code of GoShrine.

Project description

Whole History Rating

CI status
conda.recipe Conda Actions Status
pip builds Pip Actions Status
cibuildwheel Wheels Actions Status

Description

A Python interface incorporating a C++ implementation of the Whole History Rating algorithm proposed by Rémi Coulom.

The implementation is based on the Ruby code of GoShrine.

Installation

To install it from PyPI:

pip install whr

To install it from source code:

git clone git@github.com:wind23/whole_history_rating.git
pip install ./whole_history_rating

To build this package from the source code, you will need a recent version of Python 3 installed, along with setuptools>=42 and pybind11>=2.10.0. Furthermore, depending on your operating system, you may also require the installation of the appropriate C++ build environment. If you are uncertain about the required dependencies, you can begin by attempting pip install and follow the instructions provided by your system to install the necessary components.

If you encounter compatibility issues while using the latest version, you can also try the older version implemented purely in Python:

pip install whr==1.0.1

Usage

Here is an easy example about how to use the package:

In [1]: import whr
   ...: import math
   ...:
   ...: base = whr.Base(config={"w2": 30})
   ...: base.create_game("Alice", "Carol", "D", 0)  # Alice and Carol had a draw on Day 0
   ...: base.create_game("Bob", "Dave", "B", 10)  # Bob won Dave on Day 10
   ...: base.create_game("Dave", "Alice", "W", 30)  # Dave lost to Alice on Day 30
   ...: base.create_game("Bob", "Carol", "W", 60)  # Bob lost to Carol on Day 60
   ...:
   ...: base.iterate(50)  # iterate for 50 rounds

In [2]: print(base.ratings_for_player("Alice"))
   ...: print(base.ratings_for_player("Bob"))
   ...: print(base.ratings_for_player("Carol"))
   ...: print(base.ratings_for_player("Dave"))
[[0, 78.50976252870765, 185.55230942797314], [30, 79.47183295485291, 187.12327376311526]]
[[10, -15.262552175731392, 180.95086989932025], [60, -18.086030877782818, 183.0820052639819]]
[[0, 103.91877749030998, 180.55812567296852], [60, 107.30695193277168, 183.1250043094528]]
[[10, -176.67739359273045, 201.15282077913983], [30, -177.3187738768273, 202.03179750776144]]

In [3]: print(base.get_ordered_ratings())
[('Carol', [[0, 103.91877749030998, 180.55812567296852], [60, 107.30695193277168, 183.1250043094528]]), ('Alice', [[0, 78.50976252870765, 185.55230942797314], [30, 79.47183295485291, 187.12327376311526]]), ('Bob', [[10, -15.262552175731392, 180.95086989932025], [60, -18.086030877782818, 183.0820052639819]]), ('Dave', [[10, -176.67739359273045, 201.15282077913983], [30, -177.3187738768273, 202.03179750776144]])]

In [4]: evaluate = whr.Evaluate(base)
   ...: test_games = [
   ...:     ["Alice", "Bob", "B", 0],
   ...:     ["Bob", "Carol", "W", 20],
   ...:     ["Dave", "Bob", "D", 50],
   ...:     ["Alice", "Dave", "B", 70],
   ...: ]
   ...: log_likelihood = evaluate.evaluate_ave_log_likelihood_games(test_games)

In [5]: print("Likelihood: ", math.exp(log_likelihood))
Likelihood:  0.6274093351974668

To learn more about the detailed usage, please refer to the docstrings of whr.Base and whr.Evaluate.

References

Rémi Coulom. Whole-history rating: A Bayesian rating system for players of time-varying strength. In International Conference on Computers and Games. 2008.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

whr-2.0.4.tar.gz (14.1 kB view details)

Uploaded Source

Built Distributions

whr-2.0.4-pp310-pypy310_pp73-win_amd64.whl (118.1 kB view details)

Uploaded PyPy Windows x86-64

whr-2.0.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

whr-2.0.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (174.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

whr-2.0.4-cp313-cp313-win_amd64.whl (119.8 kB view details)

Uploaded CPython 3.13 Windows x86-64

whr-2.0.4-cp313-cp313-win32.whl (101.2 kB view details)

Uploaded CPython 3.13 Windows x86

whr-2.0.4-cp313-cp313-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

whr-2.0.4-cp313-cp313-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

whr-2.0.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.6 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

whr-2.0.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (182.4 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

whr-2.0.4-cp313-cp313-macosx_11_0_arm64.whl (138.9 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

whr-2.0.4-cp313-cp313-macosx_10_13_x86_64.whl (142.9 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

whr-2.0.4-cp313-cp313-macosx_10_13_universal2.whl (270.2 kB view details)

Uploaded CPython 3.13 macOS 10.13+ universal2 (ARM64, x86-64)

whr-2.0.4-cp312-cp312-win_amd64.whl (119.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

whr-2.0.4-cp312-cp312-win32.whl (101.2 kB view details)

Uploaded CPython 3.12 Windows x86

whr-2.0.4-cp312-cp312-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

whr-2.0.4-cp312-cp312-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

whr-2.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

whr-2.0.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (182.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

whr-2.0.4-cp312-cp312-macosx_11_0_arm64.whl (138.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

whr-2.0.4-cp312-cp312-macosx_10_13_x86_64.whl (142.8 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

whr-2.0.4-cp312-cp312-macosx_10_13_universal2.whl (270.0 kB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

whr-2.0.4-cp311-cp311-win_amd64.whl (119.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

whr-2.0.4-cp311-cp311-win32.whl (101.0 kB view details)

Uploaded CPython 3.11 Windows x86

whr-2.0.4-cp311-cp311-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

whr-2.0.4-cp311-cp311-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

whr-2.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

whr-2.0.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (184.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

whr-2.0.4-cp311-cp311-macosx_11_0_arm64.whl (137.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

whr-2.0.4-cp311-cp311-macosx_10_9_x86_64.whl (141.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

whr-2.0.4-cp311-cp311-macosx_10_9_universal2.whl (267.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

whr-2.0.4-cp310-cp310-win_amd64.whl (118.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

whr-2.0.4-cp310-cp310-win32.whl (99.9 kB view details)

Uploaded CPython 3.10 Windows x86

whr-2.0.4-cp310-cp310-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

whr-2.0.4-cp310-cp310-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

whr-2.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

whr-2.0.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (181.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

whr-2.0.4-cp310-cp310-macosx_11_0_arm64.whl (135.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

whr-2.0.4-cp310-cp310-macosx_10_9_x86_64.whl (140.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

whr-2.0.4-cp310-cp310-macosx_10_9_universal2.whl (265.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

whr-2.0.4-cp39-cp39-win_amd64.whl (117.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

whr-2.0.4-cp39-cp39-win32.whl (100.1 kB view details)

Uploaded CPython 3.9 Windows x86

whr-2.0.4-cp39-cp39-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

whr-2.0.4-cp39-cp39-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

whr-2.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

whr-2.0.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (182.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

whr-2.0.4-cp39-cp39-macosx_11_0_arm64.whl (136.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

whr-2.0.4-cp39-cp39-macosx_10_9_x86_64.whl (140.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

whr-2.0.4-cp39-cp39-macosx_10_9_universal2.whl (265.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

whr-2.0.4-cp38-cp38-win_amd64.whl (118.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

whr-2.0.4-cp38-cp38-win32.whl (100.0 kB view details)

Uploaded CPython 3.8 Windows x86

whr-2.0.4-cp38-cp38-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

whr-2.0.4-cp38-cp38-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

whr-2.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

whr-2.0.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (181.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

whr-2.0.4-cp38-cp38-macosx_11_0_arm64.whl (135.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

whr-2.0.4-cp38-cp38-macosx_10_9_x86_64.whl (140.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

whr-2.0.4-cp38-cp38-macosx_10_9_universal2.whl (264.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

whr-2.0.4-cp37-cp37m-win_amd64.whl (118.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

whr-2.0.4-cp37-cp37m-win32.whl (101.5 kB view details)

Uploaded CPython 3.7m Windows x86

whr-2.0.4-cp37-cp37m-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

whr-2.0.4-cp37-cp37m-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

whr-2.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

whr-2.0.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (186.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

whr-2.0.4-cp37-cp37m-macosx_10_9_x86_64.whl (139.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

whr-2.0.4-cp36-cp36m-win_amd64.whl (119.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

whr-2.0.4-cp36-cp36m-win32.whl (101.8 kB view details)

Uploaded CPython 3.6m Windows x86

whr-2.0.4-cp36-cp36m-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ x86-64

whr-2.0.4-cp36-cp36m-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ i686

whr-2.0.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (172.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

whr-2.0.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (186.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

whr-2.0.4-cp36-cp36m-macosx_10_9_x86_64.whl (137.2 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file whr-2.0.4.tar.gz.

File metadata

  • Download URL: whr-2.0.4.tar.gz
  • Upload date:
  • Size: 14.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4.tar.gz
Algorithm Hash digest
SHA256 2608f298ba8803237d0ae33831ddbe11fe3660070c580e589e94bb0dbb036ff4
MD5 9cba8b2416f692e0df57816cfa45fa57
BLAKE2b-256 f5d494b417c159a8f731225bb5e35712f61ab0963a3551ac03da928d80f600dc

See more details on using hashes here.

File details

Details for the file whr-2.0.4-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 bdf9ae58a441b66fbc8ddf76c1dbbc0a6b735877588c55f429d3e4cdf12302eb
MD5 de2cd9884661fbcde0612783fd336144
BLAKE2b-256 5cf3a40e0075b87f7ac6296d2929bb1d410cc5698d0a40385f746f423318d783

See more details on using hashes here.

File details

Details for the file whr-2.0.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f1388a27080b466b753b12290cd4f0289f5b1b0c43a09c47097de60ecb7e15e
MD5 745ade02e0049fc3399357071920d03b
BLAKE2b-256 4ee2a394248896185687c98a1fb6679def989dc0715b3d6206e23fe00b4c8195

See more details on using hashes here.

File details

Details for the file whr-2.0.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 870c8d15355cb86493a14beefaded56315c027d50f73082845958da20cd11ce7
MD5 7138e09a0dc093f331a23f9d0b0b1c03
BLAKE2b-256 1af7a795978f6e3b31ab686a26dc6cebc96eb91abbfd7cbb4f741b1ee905c207

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: whr-2.0.4-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 119.8 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 282c64d45c15f179ef1be22b1badff35bf7272ebba78269294161a37123fd68b
MD5 eab2c77d41d41e829ba2a82c5868876d
BLAKE2b-256 9edf000a4731ecbc617843f6c5989a8ff4e77666e9c291130269058666b15497

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp313-cp313-win32.whl.

File metadata

  • Download URL: whr-2.0.4-cp313-cp313-win32.whl
  • Upload date:
  • Size: 101.2 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 f903295cd69d64b3139cfbf45255e521a93772e5c3682ce3c7d5f2c9be5bd1c4
MD5 cc085fb84407f830e2bea02b17f64af7
BLAKE2b-256 721e7e1aea1e52b45fcc0a39036e5d65d644da2e6b203f9fce0a30595985901a

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b254c034dc75f16b2784a0b95579e4a0fe43be601e89d62b54dbc07900e5616a
MD5 a147f7e1f8b205bfcdea51028f2b52ae
BLAKE2b-256 7d4e8f504ba7cbc3d289aef9f4129f79ffe5bcf1b63a57c40aebd1e374f04646

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a7245d1d823c3c00ed482d4e59a87ecaa52c9a14d6a8d69f0e417fb3d5695c92
MD5 d3e39bd32dc1bd211ebe0914f8ed649b
BLAKE2b-256 d9cbcb9218fc5ce39ef759d8ef29d7c902a12a77ac37fb1fe25817592ad68fdd

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f491ed3b6a24308db659fe21db41fbcb977a7d14729b843c0465e82ede6d9a0d
MD5 5c663eee3bf4214a4d02f78cc0306f6a
BLAKE2b-256 911f906c7d9c9b3f5335638b8a9fde64a12a09a9ad06c4e14b587fb9abe33da4

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 35d222e9e81d605af9992027c9e6dbbfdf8f1392fafef64132d5db7b64eba658
MD5 d05f81c957ce56838d9bc01ffac4b6a4
BLAKE2b-256 63a41701c31de9e8364f9d22b6aaac55573d7ebc848a70f093f3960cf20080a4

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 85bdc3d84e1b7e238e67f45b9ff17b0b11033404760f974fef0f145b794ab531
MD5 cf0e10990824831812b34f396c71c3aa
BLAKE2b-256 30daf2f6814394322fc15ab8a6904ef6e8dab23e15f31a9d008928d5225dae1b

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d8843be968594f972891a3bfd5447936700ab07b85bfcaa4a9a262e9ed62e343
MD5 5b6363ea4b4827d4dce72dd48445e1f3
BLAKE2b-256 24fa2cdd2e1fd5e5922592fd6d56fe95bf957d93c8ee52d1aa03be98da9562df

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 bf3c94227351f1b72278d6d9476368ab5615298a545bacab7a0e382df9c3a5ae
MD5 7b7adced32482a2e0052d97ea319359e
BLAKE2b-256 9af30e40f551097ab12dcdba141e91965714bac1db61ef8d97edaa0ef91d9df1

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: whr-2.0.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 119.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7130a102359ce866ec9d924e1d87bbf8722782cdea66bbac9ade938a8b6cd90c
MD5 79f03e7a69e91834af01a67fd5bb25b6
BLAKE2b-256 d6c8b6239e56b01427efe2da51119fa5f918cd5140b4b10df96e8dc739afb8bf

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: whr-2.0.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 101.2 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 acfaf5694eb0992dd4084aeaaeaa7088c144ca39761b1e85a8771691b05b7015
MD5 466887d4b4424217710cbadf98f43c1a
BLAKE2b-256 4e30725649ba5feaf8a5018f24957602d4178e8e949dbf2d96fbc6db23af47f6

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e0e04f61a58fefbafcb5d91b091916603cbb7204bee9b237e7511a1065676169
MD5 723f1a95f61f05fb2b1086b36edc255f
BLAKE2b-256 7d0b17efddce5cd12ec7f6d3ab1179bfd10aeb9adef2d7866505d5076f82a569

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0aeee23514a836d4a611efa04a18658c8f94ceceeaa5c357d0bac8be348daac4
MD5 b8c3c2cdb68e713e36d695f810fa067a
BLAKE2b-256 6c8ec59f0e7786fccfdc9b6d10a8f141ae31a9301e6e22610e10a030a5669b23

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab146411bfb20d7d901ce49aee3c33391cc3caa75f50e695eb3e4632e1f3f822
MD5 9d29709e99832843634409dd2ea773be
BLAKE2b-256 c56d69a86d39fc88c3e6f1491c56333be7052808291b1e5d3743e6dcaeafad79

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d9263c3da81c4714efce253c0f6f2c01cc60007e7fc2e5ba55b85429e4969921
MD5 76cc1a82ba34bf2c5554820cfcbd37d2
BLAKE2b-256 8cbb65f0ea642099c560ad95aa01f0f9a192863c764b3707c8073d50a62d8887

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 74e80948fb34b5e3dac66b38f8b22b72250cff86923c41f99adcfe057d053c6e
MD5 0123d7679803056b379947d0603b2f81
BLAKE2b-256 1e17b8aa1ba9a6fd0ed2b898c5fa9d3382bd57a517bf7a97e292bcd133475c88

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 00d05c08790faa633d36f8b0be15e2edbc2400e8a4bb12e4f12346f6133c96a7
MD5 be07be57add7af554a731e8027b1c843
BLAKE2b-256 44b25a29888efcfe7bec14e1152cd6f601e42a82145bbf0a2322cad30cf87c1d

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 5b12c100792099a6a4b2ebb712e384100d8851e86c352414daf1f49f133f0aaa
MD5 8b5e6704c83afff27fb29c148a9d9f07
BLAKE2b-256 453d7ab09999d3bece7e733dea2b1c026bccd10953da17091a9c3336dfb8e715

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: whr-2.0.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 119.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c56a4abd2b6770a4f9c2805837358ba71a9789f65b2e34829f441367b49b522d
MD5 103aa2dfd960027b7974c14e34b7f720
BLAKE2b-256 fe001019d1f8dc2505562ca951ba715ea903759c67c16d6532cf14757d803e2e

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: whr-2.0.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 101.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 3d8ab442fd677a14d8dd8735fe3944d2ecb96b4e5ab537d368bce70f65d4d228
MD5 e586ed375e76bbb12bb727bdc3a5abd0
BLAKE2b-256 b2a336f89a2be3bad4bee63a0abf690d4ca9c961fe2aa9900ed1a144ad899150

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3409d8d0423a4cf83b5f038c82928e559ab8dfa81f9110cf657fff606a2fe2fc
MD5 3ace881f3dc517f07dc75388f234576d
BLAKE2b-256 291cf00a4bd46d5ad216c509d36b63712f693fd9fa1d3a1326acfcd2e000b5cb

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 af67f4e6c89c2d02e05d413d02b583c6d5808b6c8a305127e378a231ee6866a9
MD5 ab347cfaeef794caf9dff25268b50ecf
BLAKE2b-256 bab24a253c61080d540458f9df2163b5ab6eb82d053abb26e88501a27ccfd109

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d49d17a325b6f2332c989ccc8705e7890988b90f224f40b122c110d03dc20bf5
MD5 85bcb76c2c2450674c13106eb9b1c443
BLAKE2b-256 97299f0808e32792047f7a5e1ee4e1f0155aa4ce4f2fbc2c965864c302582954

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e7445d6f7a88351317966d058563b04d25be14fa96aecadb71a24c655d305f62
MD5 93bfb86beac8a68b2989824a87977a61
BLAKE2b-256 eedf687d9de757e82dfb2e81bf29e531d79d0658344a67d592a1741b66606fa3

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 34be9ecab26aa5906a09ee125d143d307e89538fadbb76af21dbd47c3ebdf731
MD5 5e0a290d229a224d2e3692c458198b5c
BLAKE2b-256 2aabca979c321fac08cc247666d02fff0734d924d2040e1c6e0539441e085b67

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd387c20224d209f09e3817082206f72c24d328ab684befb58169b97a9a5c5e9
MD5 c183530a44b7e403beab0371d2a80a96
BLAKE2b-256 3035cda30074508d44ce6129b52ec1413f276d401a0ddbe6703131119ccc1290

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8bfaa7626e76987d39e84157804a80d43cb16a723a3340206b54b209005e5237
MD5 25a49f247ec537e1091f8dc6075a69a5
BLAKE2b-256 92bf0b510fbf6818f43e64a12041f19dce4848e0f9f5cc91282bef5064120dd8

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: whr-2.0.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 118.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f7b4a90fbb0d70912ac44a07003be667e60477bd987c63e4ff91ee104b5e26ad
MD5 1f82eb897febf68b6430a0fb63981eb7
BLAKE2b-256 3d95c3f54dafd9ff24f5882fb948802876b30c0d1ec955b5ec0bff3eecdfc698

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: whr-2.0.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 99.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 454da2cbf30b59f0daae18947a97f445a66cd7f125134ca5b46a37b64488c4f7
MD5 c99e943c82b679517fb7d9ef2ad981d7
BLAKE2b-256 301e26f2687d23219607c5e76d8b667a38c2228c01633863156b15fab6e844a5

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 55c4a97493b747e7e592349cb3e3407978cd472a856a01b9edc1a72af80753f4
MD5 88d11230095d87a3869f3107c477d3a2
BLAKE2b-256 438bd1662df9666528049d59669df68ebd1602119b31e6d1a1f2c487c5c4649e

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 2b63f96ee87a05f708ed92f6a47e421178a656dacd56fc0c13f4877ddbcdf75d
MD5 854351824b42272b6043f4e4690e1ebc
BLAKE2b-256 e12a7afd918f71edec3be166f81687b520d86e4020423083343aca5a0eaa81b3

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d6acd1e5250241c6835ddc0fc51329457b49433b7b7f648bd4df1a5c19af204
MD5 4c2b94f69fbc65ba73633d8680eaeb3b
BLAKE2b-256 4b97a01240d85216feabd4cdb5d31a1e4c65349c498cfece050e9c545b9b8c2a

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 62a76e684146e95ba49fec814764562d053e2621de2e74f3b18c58ce835c5d90
MD5 ec73589fed22988addda8d354af61d0a
BLAKE2b-256 781914c90442508c6824fcedbcf92c2ab6b4330d225dab77ce6c4954e5e1ffc1

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 21be682cd32c2ffccdb590ca9e217812e2642efda9ac8b6d528785eb9b3c2b9e
MD5 254f1d0599af0a9a108444590aa1d8ea
BLAKE2b-256 77d228cafc380335fd363deb20b10c544cc2916b76e61b5f66fbf010f9311d9a

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb3d5be40b4f2f689c4a2ff725126cc012aebdd41303aa9a5b71591d31619f62
MD5 6840330c7ed86420b1fdf63de1db44ba
BLAKE2b-256 f1d67bcdddd9868365a66d3ccdd83c158885546d3c8692e26732cf5495f6b527

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 720a2426cf1979f4bee9f8153110b1d6c54fd1e3d1ee4d4851ddfe36b14f8a7d
MD5 c6a53b94e3bd32f859de7ce0c68a89c3
BLAKE2b-256 b8212e7ba4c20f2be8f090d06f9efd9603fd898a31cc61e3eebb12affd45549f

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: whr-2.0.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 117.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2ff380acfd4d23b83959f2684742136683a2eab9a106646f7e86c3bc356d9488
MD5 e0f9dcece6c0adb2ce8155dd33db9cd4
BLAKE2b-256 248b3931055f8ab52871d3c4ba7c4044778f0d02a1bd42e7cee3c9f23d8bc42a

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: whr-2.0.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 100.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 328798390f1c48fefa9969bae898b552c830ed1dd96040b1898e8aa8ab9de39b
MD5 a43de846f75fea166523066f28ec2103
BLAKE2b-256 67f5e597b73c4d44d3bcf26fc1925a14605a35ca3f5b5cd20b45c992d2b146e8

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a820e92b24d6f9f79e958158e26d75cae38623e315c4c44bdb1d9893037429d7
MD5 0c4eab4e3e3ad1943de43851fcd6c9ec
BLAKE2b-256 5fb308c3688b062961ac0f56d99be1e6bee33b1ad539f513fb327f0a15e52c3c

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

  • Download URL: whr-2.0.4-cp39-cp39-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 58b62aa92b918c9cb681c058e640d29b600b65a0acfa17e8fa596e52d7d36b7c
MD5 858470488dfc213d98e5efdc14060baa
BLAKE2b-256 084c5476a395729dc9c89ef02c58bb8c10c8d45f6217bb14025f455b9961b95c

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0454b23bc23f7e94ecfd2dbd7ab79e2d5a0e9de700bfd2aa720bb77e59723a1
MD5 fe2cef406ccedebe833edded6ccab674
BLAKE2b-256 de03e3fb44f054288e0c6f98fc02ea1f32214c71edf794446c21666fd9876195

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5676ddf9e1732250ef2392143981ac61c16023700430afa14f456a17c4fb57d7
MD5 d46435cbe160725f446da08e7058134a
BLAKE2b-256 2ae5e732005da2d21ea63c868b90b6859abfeb43fe10eafec251a4e3ffdaaf7a

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c23e7e90457a7a568240f19cb8b5bb6ed5bb5efa60d1b64a3070b759395a2f78
MD5 cd33c3c45674cdd45f6cb2c6e0028f77
BLAKE2b-256 55aeaeedf526c0aae2d7df965a013d4ef08789b265843d420d798e8392027c70

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8858942f9b6dcd2f49c54eb50ddf647f4287c89323cabc8995d2ebd045f71dd6
MD5 64ad698ef0f1f8a0483066a80e458ef5
BLAKE2b-256 51b20dc3e2ce97090ac9863ba16839cae7d8ee859772fc175b74b4f68a634f69

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: whr-2.0.4-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 265.3 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b2096a2a37267f8b862855c5f3faa8e5ca1ec4da10f4ec019835f8443da23447
MD5 a77a8c92e8c9de3e8ffe03daa653e242
BLAKE2b-256 bb35f1d6aa42c739145d48ab89a5139b122a7109a51eb010121088b852de35ad

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: whr-2.0.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 118.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e9946347954084826e2810e05ec4365b56ab7fadf85be5ea3fa41a2363dc6dd7
MD5 b76b8444d3c24866bc0efcf122994af5
BLAKE2b-256 9c5b952bd64b4080708e1ef600ac78d7c26bd9aa5e922ad4eb729df9084fd03d

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: whr-2.0.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 100.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2834dd14207f34286e8aa8cb96555446976a1601dfe73bfda05cc712e496c200
MD5 3f3a0db5f1d22237ec5a115107ec12f4
BLAKE2b-256 265e267b5a2ff8fdd876e226b07249f979520c37943822d497127e1cef32d89e

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ac05c0f6393a143ff18a30bc2214fbacd7df4a20c662519a1dadfca44a130d02
MD5 796f166c72752e219ad8714c4964528b
BLAKE2b-256 b44ad58e898841d825667e6592276222c3c241a19337b67d5e0d519c55ef1a90

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

  • Download URL: whr-2.0.4-cp38-cp38-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0a585a1cbb4aa1b77a956f0a05ff777d1a8763e26072a3e0920df81edc631fd5
MD5 4b4049400a54073c70f6ee8b66e9b0bd
BLAKE2b-256 a502000af01e1d59ef17d0b9b386e0c0777358c5f7cded2a8a427d61e847da90

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8584e5fc70312148ca73bf5332f508c341a62666175804395c65c71bc69f608f
MD5 73b6657192ff16ac5910d930737d9c47
BLAKE2b-256 c5ac6556947694d9c6d7664e3990afc6a0acc47e68bfa4675ba8b196bac71470

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f76b8e1650779d7598cd770bd65c5bda0b709e5a79708b26f6fa149174fdf1b1
MD5 b0227cb61b9686c029b103e27f1abaa9
BLAKE2b-256 b47f01a932f227a261e98045dbee9e834b29d6a343fb67420d0d34d7f47b7e3c

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 996c79d2cee1edb4de0ec0dc61a768ac5da683fd13af72be8ee718fb9521bdd5
MD5 c20e49f7bda4ee7c66cf5643478a4a8e
BLAKE2b-256 55f05d39611e6e7848141512735f2ce240966cdcd10260887595cd61375de96f

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eaedd31f4171035e632eba3e82789386e5f3248f9ec5ec56a06c8f8be8f14bc3
MD5 dd5e3bdfe516a4bb797eb39f3019177b
BLAKE2b-256 5c8bbe122843dd06b7fcc8792c3d99f8a2b620f2bf584fb7938d978c995dacae

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: whr-2.0.4-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 264.8 kB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cb41f8f99515bbdf89c78a22658594ace11eb4e0979535f6982ce0e400fbdf0b
MD5 4d27ac676868b596cf69cee6550f3279
BLAKE2b-256 9bdded5c711d168b44ff929e1756ccaf9fb2187c28d8b632578de56de4d679db

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: whr-2.0.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 118.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 88d9d3a134168bf28d8789af74cf7bcdc1b45cd5aaa3d5e426a53901f0ba3c65
MD5 1983c57246b58a332f44ebf043ae202c
BLAKE2b-256 c6cb13b18ac86dd5474d23220bac10886525a61e7fd81d43e980cf7076884e8d

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: whr-2.0.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 101.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 fcaf558d1764e0062059bb19af01e3d24a715cb60eaa3eda1ad8fc068e8efad0
MD5 28886c4ba7b620b5d05ce8abf058b438
BLAKE2b-256 edd1d4300be86ef26c8453bc58cba32afc0dcc3cef4799015698079ac927d224

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ea9cb94179a8ee9aae8cc7614e8c31c5e1a1f8a95b19c48d9d36c924621c1357
MD5 e377b55441a369e9010e81aff7ee3a68
BLAKE2b-256 3b92e310a5887511b054e995b948bd00d77af016390b9f5f0f288a66975a27a4

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 09514ae00384f555986bbd91fff2577ef52e918dc2895b56ec8709559158f1fd
MD5 b9915438f7e6b84970ce4b06c659a0d3
BLAKE2b-256 8d9e0b275767ef99e4f28ea85261d0211e4250adc21280577d4ca092f036bf28

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ef65e26121f143095d809d6e11dec981f3cb1654c018a6b0c63dc23425ecfd5
MD5 134fae42d497afed6c0644742d7f72b6
BLAKE2b-256 c9813d9e069e2a124fa413f0bbf6db61f553b474168ca174bc8006d6d577c18a

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 47814f6d61ec2ab44df71e52c884e3a8654098786135f1a668a1920611a5265c
MD5 ecf6adb6c6d6133becfb1135f36c75c3
BLAKE2b-256 a18fa66838151e2c320462a041d062f3b96b6423b6fffca4373fd2626768bbf1

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3da871a293984ac8afaa938d646b89b7ca867f28145a907a801b090841bcf8f8
MD5 2746ddf8b801f8f0201d8025d2b487e1
BLAKE2b-256 97170366025061f38f77230c2bef81bf9c0855d2dbeab36abdcd176e527e4ba5

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: whr-2.0.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 119.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 16d9b3c2c90c43dac2a3b35fe8e7ff496bac1641fd9f19227345fd4e808bf7f7
MD5 7a755073d87a176976bfc392da020a3c
BLAKE2b-256 644657e8e6260d52db9a1d03089e0c6a139ef7b5e86d164d15ef5445190920e2

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: whr-2.0.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 101.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for whr-2.0.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b8b1851e9d6e942d55ba95d0ca2aa952b5b3ff127f37acedb36d9f7c6fdbf882
MD5 3bf20e241577a1e3746e15dcf5f9c69c
BLAKE2b-256 482a27996aa016e4ce4ba00faadc15e6fb88dd7a917289ff4e85f80105eca4c6

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp36-cp36m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp36-cp36m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 edf0ac90106357add961b5fe87827116608dfed65ff49672504f21a73772560d
MD5 264e873a2030caf2d28918bc10054d0d
BLAKE2b-256 a417125f735aa85afa0f657f15b642ce9c6227cd43ed79cd3a195b92b28474b8

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp36-cp36m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp36-cp36m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5831fbed5e103dae7fc7067c907b603700f2e5d60e6026fee1882ede6f063b4a
MD5 3c2a056c9640a692bf3fd6da83e552b2
BLAKE2b-256 7dca37f6cc14f2f1fc74060819160f584820b2b8f643ed37b751c1a26a591d91

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3356a19f0fef693eed7fc6790b870df021eb4d8846ed99b9583ac38b3b541d62
MD5 7b31821f8d88a804ceb53d815fd0c6af
BLAKE2b-256 0a0a70f1002df0758a40b2ccce63aebdb9af5d49570424e309ca884425d02a51

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7de98779770ce9fc2e7a62d1dbabf4a3c26a7db56e7bb9616b171c4391605c22
MD5 93abb5d16fc59a7b347dcf6c696d2190
BLAKE2b-256 12ee8d048edb7c7cecac99909b6df15bfec134ab57900c3e2a3db8f453ba2d03

See more details on using hashes here.

File details

Details for the file whr-2.0.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for whr-2.0.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d569218ae591961cfb33d125d48cdf1f7f8a74abff10d9ced1ec6de581425db5
MD5 3007474b7b40a94c68c0f109275cfb36
BLAKE2b-256 90e6dda5f12513701b8d48386e51c19f70898bcbc5ede3505a07bc285d835f48

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page