Skip to main content

A wrapper for the C++ Datasketches library

Project description

# Python Wrapper for Datasketches

## Installation

The release files do not include the needed python binding library ([pybind11](https://github.com/pybind/pybind11)). If building from a relase package, you must ensure that the pybind11 directory points to a local copy of pybind11.

An official pypi build is eventually planned but not yet available.

If you instead want to take a (possibly ill-advised) gamble on the current state of the master branch being useable, you can run: `pip install git+https://github.com/apache/datasketches-cpp.git`

## Developer Instructions

### Building

When cloning the source repository, you should include the pybind11 submodule with the –recursive option to the clone command: ` git clone --recursive https://github.com/apache/datasketches-cpp.git cd datasketches-cpp python -m pip install --upgrade pip setuptools wheel numpy python setup.py build `

If you cloned without –recursive, you can add the submodule post-checkout using git submodule update –init –recursive.

### Installing

Assuming you have already checked out the library and any dependent submodules, install by simply replacing the lsat line of the build command with python setup.py install.

### Unit tests

The python tests are run with tox. To ensure you have all the needed packages, from the package base directory run: ` python -m pip install --upgrade pip setuptools wheel numpy tox tox `

## Usage

Having installed the library, loading the Datasketches library in Python is simple: import datasketches.

## Available Sketch Classes

  • KLL
    • kll_ints_sketch

    • kll_floats_sketch

  • Frequent Items
    • frequent_strings_sketch

    • Error types are frequent_items_error_type.{NO_FALSE_NEGATIVES | NO_FALSE_POSITIVES}

  • Theta
    • update_theta_sketch

    • compact_theta_sketch (cannot be instantiated directly)

    • theta_union

    • theta_intersection

    • theta_a_not_b

  • HLL
    • hll_sketch

    • hll_union

    • Target HLL types are tgt_hll_type.{HLL_4 | HLL_6 | HLL_8}

  • CPC
    • cpc_sketch

    • cpc_union

  • VarOpt Sampling
    • var_opt_sketch

    • var_opt_union

  • Vector of KLL
    • vector_of_kll_ints_sketches

    • vector_of_kll_floats_sketches

## Known Differences from C++

The Python API largely mirrors the C++ API, with a few minor exceptions: The primary known differences are that Python on modern platforms does not support unsigned integer values or numeric values with fewer than 64 bits. As a result, you may not be able to produce identical sketches from within Python as you can with Java and C++. Loading those sketches after they have been serialized from another language will work as expected.

The Vector of KLL object is currently exclusive to python, and holds an array of independent KLL sketches. This is useful for creating a set of KLL sketches over a vector and has been designed to allow input as either a vector or a matrix of multiple vectors.

We have also removed reliance on a builder class for theta sketches as Python allows named arguments to the constructor, not strictly positional arguments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

whylabs_datasketches-2.2.0b1-cp310-cp310-macosx_12_0_arm64.whl (367.3 kB view details)

Uploaded CPython 3.10macOS 12.0+ ARM64

whylabs_datasketches-2.2.0b1-cp39-cp39-win_amd64.whl (501.9 kB view details)

Uploaded CPython 3.9Windows x86-64

whylabs_datasketches-2.2.0b1-cp39-cp39-manylinux2010_x86_64.whl (404.2 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64

whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_12_0_arm64.whl (367.4 kB view details)

Uploaded CPython 3.9macOS 12.0+ ARM64

whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_10_15_x86_64.whl (392.7 kB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_10_9_x86_64.whl (392.9 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

whylabs_datasketches-2.2.0b1-cp38-cp38-win_amd64.whl (319.7 kB view details)

Uploaded CPython 3.8Windows x86-64

whylabs_datasketches-2.2.0b1-cp38-cp38-manylinux2010_x86_64.whl (405.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_12_0_arm64.whl (367.4 kB view details)

Uploaded CPython 3.8macOS 12.0+ ARM64

whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_10_15_x86_64.whl (392.6 kB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_10_9_x86_64.whl (392.9 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

whylabs_datasketches-2.2.0b1-cp37-cp37m-win_amd64.whl (517.6 kB view details)

Uploaded CPython 3.7mWindows x86-64

whylabs_datasketches-2.2.0b1-cp37-cp37m-manylinux2010_x86_64.whl (410.7 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

whylabs_datasketches-2.2.0b1-cp37-cp37m-macosx_10_15_x86_64.whl (383.3 kB view details)

Uploaded CPython 3.7mmacOS 10.15+ x86-64

whylabs_datasketches-2.2.0b1-cp37-cp37m-macosx_10_9_x86_64.whl (383.5 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

whylabs_datasketches-2.2.0b1-cp36-cp36m-win_amd64.whl (517.6 kB view details)

Uploaded CPython 3.6mWindows x86-64

whylabs_datasketches-2.2.0b1-cp36-cp36m-manylinux2010_x86_64.whl (410.5 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

whylabs_datasketches-2.2.0b1-cp36-cp36m-macosx_10_15_x86_64.whl (383.3 kB view details)

Uploaded CPython 3.6mmacOS 10.15+ x86-64

whylabs_datasketches-2.2.0b1-cp36-cp36m-macosx_10_9_x86_64.whl (383.4 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

whylabs_datasketches-2.2.0b1-cp35-cp35m-manylinux2010_x86_64.whl (410.5 kB view details)

Uploaded CPython 3.5mmanylinux: glibc 2.12+ x86-64

whylabs_datasketches-2.2.0b1-cp35-cp35m-macosx_10_15_x86_64.whl (383.3 kB view details)

Uploaded CPython 3.5mmacOS 10.15+ x86-64

File details

Details for the file whylabs_datasketches-2.2.0b1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp310-cp310-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 367.3 kB
  • Tags: CPython 3.10, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.11.0 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 7198a56868cc293bb5ac71a90d1e35088a06c010a9cc5d5e9e62339bab20cb61
MD5 124a9d58bcf0a465e2054651ee3b1627
BLAKE2b-256 42cf99581b5f208ec76302fb998a8dc4f4100a49a2196d72ff145f5ea7ae15fc

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 501.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bed8ea30be37c2f00a3cf2f446116dd3b8b9a59e8773491e005bba488e0b5608
MD5 d160d3918e93398b9f397dabd550cb62
BLAKE2b-256 ad057b13f696c045bec10c983110692961f9761d52045945fa54a21004c20f1a

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 404.2 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ada72be8dd5bb4f33d4efd2012e483df6f9e855c6b0f0bf10596e6d4ddc149c0
MD5 05a111ea2fa322bd843358146c8a2eda
BLAKE2b-256 16f5230772f369e286e33f43c8cfd1312791f01a3b4ff2e4a0061324d23820b1

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 367.4 kB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.11.0 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 28212cf1aae97eaf178f72920cd83f26a0cf93f06c33ce12b3dc1a96b7fd4d5c
MD5 66443d0cdf26254a49106651d6339caf
BLAKE2b-256 93fb80e32fae61ea3ee676da716cdff33a57c9e7887571414b93a674ff4a530c

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 392.7 kB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4fcf8d3a083eb6e3cb898f607a4a174f4edf7aab26e70a06fdd6d19af6c6c96f
MD5 ca6f3a1c0cb0be49e5f9852335f0d0e8
BLAKE2b-256 dea50576400275a69fa0e77cc2388dbdca0ef12b9f559fe4e5e1b65bc2d52038

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 392.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 787e1d638a885179b1ff17505fee5dce5292d39eab92a8968f21a0b06c81a5ae
MD5 d613ab111e869da9c9207ca5bb36a667
BLAKE2b-256 329feaac711b0db3a52a9c0011cc734068ec4df93b4cc1475d23bc3ebfe26df1

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 319.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 96d6b6187dfb8880479708e96e9f41e1f5437e704788235253ca883df641afea
MD5 ed99ec26274e1ab17bcb3892c9a002b7
BLAKE2b-256 fa31e895ccb4adf7b15616e6e52fa127187dbf328ac0d67e354bac96be38403a

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 405.1 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bdde29bc2900237bc4959fdd20cb781c9343e1748ce1be012ba904c344ded3e0
MD5 ce758dac717f8e35a876934938789e05
BLAKE2b-256 05fac2d835df4c313db9fa283b6f4d94d1888870ea02b2e0ba652ac61e2457de

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 367.4 kB
  • Tags: CPython 3.8, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.11.0 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 04893189ce99bd1b5ec1eb3dd04c33ebaba7a83cdfe6bd581e46ac46f86dc225
MD5 2f39be6bf923acd6a3aa092970eafea7
BLAKE2b-256 1f58c3d0e52cd343edd4f7488221ffbf3015728a1c69722409ee5716304ee54c

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 392.6 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 decf9b046d8b018da6c71119656604ca5002e32d66edd7efed349a00db22bf04
MD5 8b70d039e6408a2bfb89024b6e823dcf
BLAKE2b-256 365d7d99160cc9e998b6632db346c31b91b4e67e50c7ce0ee3417511572079c4

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 392.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 090fa950c7d0c73c0ac1523b076e4194f04887c521b1b0cb59eb8af574e3c634
MD5 6b7efb385df3ef66a485dae1bc4f7398
BLAKE2b-256 a63f848f3e3567a81ab4717029fc7063b79d437f316e5cf306a34ceadb12e504

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 517.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bdbec6065d8b117d5dd0223668e615d9c8ff896a33fd834839f78d785b93bd4d
MD5 f57daa5a53136d6312c5ccec0efd5def
BLAKE2b-256 21803cb9520d414b6c76fffb2eb7eb784b638dfc44b5ab478ea628454dae5752

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 410.7 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 44c3e3d086567735fe2ca5b43f54d485056f84d7581356baa109b85f89be7f3a
MD5 6c276b059273b51c7e71ee77b1745128
BLAKE2b-256 42186355487eabce3ac08d4bd09c7d75ee52c61618a32f9661a6f74f2c5c1b8a

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 383.3 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 444e43dee55d745dd20d4117c60e855c8cabe27cbebeac58b2b8f25f3564137e
MD5 845ebe1c3ce5f2efe7f981185f09cb14
BLAKE2b-256 76724e9ff5e26473293ab3934344e48d4aa9df92cb030e0517bff200a8eb0735

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 383.5 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2345775b5671d156f2142fc7332dc4a9a3b316973fed5295399f8cf27a81327c
MD5 681215f8a5db161e550dd2e6600eb41e
BLAKE2b-256 ba462cc5ed39f777254f25defe61296b09f58809be7ec8c766ae298476aa5b8e

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 517.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b152189ae8f8fd4ce28a3f2cf42e0f396bb623c50d258a0e138e3b1e4b4ac246
MD5 6715c8d212226f8617274a6b201fb505
BLAKE2b-256 12e42ce7eeb101b916c046133a062f6a06b00722b3bb3dfdedc281991e1bf0ea

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 410.5 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6d41c662baab1ed4e4314de8db484471430723ae5c3b8a2ec84dc42c170a939e
MD5 828ffaaf32501c1f4e83f3d92ce9471c
BLAKE2b-256 fd301497b9092574cbd60abaf040f593dc189085a10bde621931f3c168a7e9a1

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 383.3 kB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 aa0536576be6cde3c06acbb3cad3cbfc56d13850c5b764e70fe4c71fe7f541b5
MD5 4f2a5fe2856ba510fec71224ba3ac948
BLAKE2b-256 ec61b4ce193e2b4e6dfd392ef2467fdeebd6ea744ef5aedd297761016d2d9613

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 383.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2eecf0a2ee67480b0f4afd854e91931931dc2f7de801f6142769b76ba3f437f
MD5 44f1ff32fd89da68498bbde831523725
BLAKE2b-256 fea441f3d4ba6dc34aaa3da3e61989c744e70c155d51bfb95e6026240571bc96

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 410.5 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 729367d3ce976975a6a986987b0287de08761d8bdedbcb37ef40c2a8ddbbfb18
MD5 986df2d56bb5a81637b57db774fdbd56
BLAKE2b-256 1f31803bd29b90dfc08c14447adaf6213cb25f02c2d5d2bfa1ab522a187f3087

See more details on using hashes here.

File details

Details for the file whylabs_datasketches-2.2.0b1-cp35-cp35m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: whylabs_datasketches-2.2.0b1-cp35-cp35m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 383.3 kB
  • Tags: CPython 3.5m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for whylabs_datasketches-2.2.0b1-cp35-cp35m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a2942e830341df19afab200eed04d9db86ee0dfbd00c061156521eb5233908b1
MD5 0246361eaebc2cde52c402de6a11bd96
BLAKE2b-256 9d6642d4d0e6c1925b6cd140c5d09f79b4fcd47259ff10ceb1c55c060a8647ea

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page