Skip to main content

Implements Wide Boosting functions for popular boosting packages

Project description

wideboost

Implements wide boosting using popular boosting frameworks as a backend.

Getting started

pip install wideboost

Sample scripts

XGBoost back-end

import xgboost as xgb
from wideboost.wrappers import wxgb
from pydataset import data
import numpy as np

########
## Get and format the data
DAT = np.asarray(data('Yogurt'))
X = DAT[:,0:9]
Y = np.zeros([X.shape[0],1])
Y[DAT[:,9] == 'dannon'] = 1
Y[DAT[:,9] == 'hiland'] = 2
Y[DAT[:,9] == 'weight'] = 3

n = X.shape[0]
np.random.seed(123)
train_idx = np.random.choice(np.arange(n),round(n*0.5),replace=False)
test_idx = np.setdiff1d(np.arange(n),train_idx)

dtrain = xgb.DMatrix(X[train_idx,:],label=Y[train_idx,:])
dtest = xgb.DMatrix(X[test_idx,:],label=Y[test_idx,:])
#########

#########
## Set parameters and run wide boosting

param = {'btype':'I',      ## wideboost param -- one of 'I', 'In', 'R', 'Rn'
         'extra_dims':10,  ## wideboost param -- integer >= 0
         'max_depth':8,
         'eta':0.1,
         'objective':'multi:softmax',
         'num_class':4,
         'eval_metric':['merror'] }

num_round = 100
watchlist = [(dtrain,'train'),(dtest,'test')]
wxgb_results = dict()
bst = wxgb.train(param, dtrain, num_round,watchlist,evals_result=wxgb_results)

LightGBM back-end

import lightgbm as lgb
from wideboost.wrappers import wlgb
from pydataset import data
import numpy as np

########
## Get and format the data
DAT = np.asarray(data('Yogurt'))
X = DAT[:,0:9]
Y = np.zeros([X.shape[0],1])
Y[DAT[:,9] == 'dannon'] = 1
Y[DAT[:,9] == 'hiland'] = 2
Y[DAT[:,9] == 'weight'] = 3

n = X.shape[0]
np.random.seed(123)
train_idx = np.random.choice(np.arange(n),round(n*0.5),replace=False)
test_idx = np.setdiff1d(np.arange(n),train_idx)

train_data = lgb.Dataset(X[train_idx,:],label=Y[train_idx,0])
test_data = lgb.Dataset(X[test_idx,:],label=Y[test_idx,0])
#########

#########
## Set parameters and run wide boosting

param = {'btype':'I',      ## wideboost param -- one of 'I', 'In', 'R', 'Rn'
         'extra_dims':10,  ## wideboost param -- integer >= 0
         'objective':'multiclass',
         'metric':'multi_error',
         'num_class':4,
         'learning_rate': 0.1
        }

wlgb_results = dict()
bst = wlgb.train(param, train_data, valid_sets=test_data, num_boost_round=100, evals_result=wlgb_results)

Parameter Explanations

'btype' indicates how to initialize the beta matrix. Settings are 'I', 'In', 'R', 'Rn'.

'extra_dims' integer indicating how many "wide" dimensions are used. When 'extra_dims' is set to 0 (and 'btype' is set to 'I') then wide boosting is equivalent to standard gradient boosting.

Reference

https://arxiv.org/pdf/2007.09855.pdf

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wideboost-0.2.0.tar.gz (8.4 kB view details)

Uploaded Source

Built Distribution

wideboost-0.2.0-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file wideboost-0.2.0.tar.gz.

File metadata

  • Download URL: wideboost-0.2.0.tar.gz
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.3

File hashes

Hashes for wideboost-0.2.0.tar.gz
Algorithm Hash digest
SHA256 090893c9938f5a04eacbd8b7f17ed5ffe6a9b54fd518fe7cdb86c060b090e411
MD5 6cd26c79eabc5eb3329b6e25352712d5
BLAKE2b-256 60e6f8414d7d136186dfb4ae5441d70567882fb7dc9499e8dc474bb38fee4774

See more details on using hashes here.

File details

Details for the file wideboost-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: wideboost-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 12.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.3

File hashes

Hashes for wideboost-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 11c0df7d2b1d037d2587d8272afcaeb8e41464b8adb7451173e96e2890bfb6bf
MD5 b9622a06dd0df35c3d92e35dbd7d6a0b
BLAKE2b-256 9b1473c1208c7277e5451f558db6b65ea97c1783955c495a1d5d879dcaaf6de0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page