Skip to main content

Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

Project description

WIDER-YOLO : Yüz Tespit Uygulaması Yap

Wider-Yolo Kütüphanesinin Kullanımı

1. Wider Face Veri Setini İndir

Not: İndirilen veri setini ismini değiştirmeden wider_data klasörün içine atın.

2. Dosyaları Düzeni:

datasets/ 
      wider_face_split/  
          - wider_face_train_bbx_gt.txt
          - wider_face_val_bbx_gt.txt
         
      WIDER_train/
         - images

      WIDER_train_annotations 

      WIDER_val
         - images

      WIDER_val_annotations

Not: WIDER_train_annotations ve WIDER_val_annotations klasörleri oluşturmanıza gerek yoktur.

3. Wider Veri Setini Voc Xml Formatına Çevir

python ./wider_to_xml.py -ap ./wider_data/wider_face_split/wider_face_train_bbx_gt.txt -tp ./wider_data/WIDER_train_annotations/ -ip ./wider_data/WIDER_train/images/
python ./wider_to_xml.py -ap ./wider_data/wider_face_split/wider_face_val_bbx_gt.txt -tp ./wider_data/WIDER_val_annotations/ -ip ./wider_data/WIDER_val/images/

4. Voc Xml Veri Setini Yolo Formatına Çevir

python ./xml_to_yolo --path ./wider_data/WIDER_train_annotations/
python ./xml_to_yolo --path ./wider_data/WIDER_val_annotations/

5. Yolo Modelini Eğit

!yolov5 train --data data.yaml --weights 'yolov5n.pt' --batch-size 16 --epochs 100 --imgs 512

6. Yolo Modelini Test Et

Tek resim test etmek için:

!yolov5 detect --weights wider-yolo.pth --source  file.jpg  

Tüm resim dosyasını test etmek için

!yolov5 detect --weights wider-yolo.pth --source  path/*.jpg 

Not: Yeterli Gpu kaynağına sahip olamadığım için wider seti için düşük parametre değerleri verdim. Parametre Değerleri:

batch-size: 256, epochs: 5, imgs 320

6. Yolov5 + Sahi Algoritmasını Test Et

from sahi.model import Yolov5DetectionModel
from sahi.utils.cv import read_image
from sahi.predict import get_prediction, get_sliced_prediction, predict
from IPython.display import Image

detection_model = Yolov5DetectionModel(
   model_path="last.pt",
   confidence_threshold=0.3,
   device="cpu",
)

result = get_sliced_prediction(
    "test_data/2.jpg",
    detection_model,
    slice_height = 256,
    slice_width = 256,
    overlap_height_ratio = 0.8,
    overlap_width_ratio = 0.8
)
result.export_visuals(export_dir="demo_data/")
Image("demo_data/prediction_visual.png")

Sahi Algoritması ile ilgili Örnek Proje:

Referanslar:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wideryolo-0.0.8.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

wideryolo-0.0.8-py3-none-any.whl (3.8 kB view details)

Uploaded Python 3

File details

Details for the file wideryolo-0.0.8.tar.gz.

File metadata

  • Download URL: wideryolo-0.0.8.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for wideryolo-0.0.8.tar.gz
Algorithm Hash digest
SHA256 ef97971dc74a3def78a1c09ed190f7ba0d4cc59d706b82e7558af3397000ec3d
MD5 2de11e52d49dcde109a8de60448d5a4f
BLAKE2b-256 cb390036e6648f9968a5a730b28928b48dfed8ea6142c6492d024499b453210b

See more details on using hashes here.

File details

Details for the file wideryolo-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: wideryolo-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 3.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for wideryolo-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 a4c2d4b49040c1b343df3c227bc242e4ddf77cc639b24f9c01226eb7b300cde6
MD5 2e6b012946e63109b9fafc4a90f3bf46
BLAKE2b-256 27dd82e4fe48bf96d4af3f624bd265bea4045ed7d461b2fb806a9424901a4ed1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page