Skip to main content

Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

Project description

WIDER-YOLO : Yuz Tespit Uygulamasi Yap

Wider-Yolo Kutuphanesinin Kullanimi

1. Wider Face Veri Setini Indir

Not: Indirilen veri setini ismini degistirmeden wider_data klasorun icine atın.

2. Dosya Düzeni:

datasets/ 
      wider_face_split/  
          - wider_face_train_bbx_gt.txt
          - wider_face_val_bbx_gt.txt
         
      WIDER_train/
         - images

      WIDER_train_annotations 

      WIDER_val
         - images

      WIDER_val_annotations

Not: WIDER_train_annotations ve WIDER_val_annotations klasorleri olusturmaniza gerek yoktur.

3. Wider Veri Setini Voc Xml Formatına Cevir

python ./wider_to_xml.py -ap ./wider_data/wider_face_split/wider_face_train_bbx_gt.txt -tp ./wider_data/WIDER_train_annotations/ -ip ./wider_data/WIDER_train/images/
python ./wider_to_xml.py -ap ./wider_data/wider_face_split/wider_face_val_bbx_gt.txt -tp ./wider_data/WIDER_val_annotations/ -ip ./wider_data/WIDER_val/images/

4. Voc Xml Veri Setini Yolo Formatına Cevir

python ./xml_to_yolo --path ./wider_data/WIDER_train_annotations/
python ./xml_to_yolo --path ./wider_data/WIDER_val_annotations/

5. Yolo Modelini Egit

!yolov5 train --data data.yaml --weights 'yolov5n.pt' --batch-size 16 --epochs 100 --imgs 512

6. Yolo Modelini Test Et

Tek resim test etmek icin:

!yolov5 detect --weights wider-yolo.pth --source  file.jpg  

Tum resim dosyasini test etmek icin

!yolov5 detect --weights wider-yolo.pth --source  path/*.jpg 

Not: Yeterli Gpu kaynağına sahip olamadığım icin wider seti icin dusuk parametre degerleri verdim. Parametre Degerleri:

batch-size: 256, epochs: 5, imgs 320

6. Yolov5 + Sahi Algoritmasini Test Et

from sahi.model import Yolov5DetectionModel
from sahi.utils.cv import read_image
from sahi.predict import get_prediction, get_sliced_prediction, predict
from IPython.display import Image

detection_model = Yolov5DetectionModel(
   model_path="last.pt",
   confidence_threshold=0.3,
   device="cpu",
)

result = get_sliced_prediction(
    "test_data/2.jpg",
    detection_model,
    slice_height = 256,
    slice_width = 256,
    overlap_height_ratio = 0.8,
    overlap_width_ratio = 0.8
)
result.export_visuals(export_dir="demo_data/")
Image("demo_data/prediction_visual.png")

Sahi Algoritmasi ile ilgili Ornek Proje:

Referanslar:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wideryolo-0.0.2.tar.gz (5.6 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page