Skip to main content

The challenge is to create a model that uses data from the first 24 hours of intensive care to predict patient survival. (Kaggle Proj) https://www.kaggle.com/c/widsdatathon2020/overview

Project description

wids_datathon_2020

The challenge is to create a model that uses data from the first 24 hours of intensive care to predict patient survival. (Kaggle Proj) https://www.kaggle.com/c/widsdatathon2020/overview

How-to Perform Inference

This project provides a publicly-accessible and straight forward way to perform batch or realtime inference based on WiDS Datathon 2020 data.

$ pip install wids-datathon-2020

$ mkdir -p data/external data/raw data/interim data/processed data/predictions models/
$ wget -O data/external/widsdatathon2020.zip https://github.com/iainwo/kaggle/blob/master/wids-datathon-2020/data/external/widsdatathon2020.zip

$ python -m wids_datathon_2020.data.unzip_dataset
$ python -m wids_datathon_2020.learn data/raw/training_v2.csv
$ python -m wids_datathon_2020.inference data/raw/unlabeled.csv

$ head data/predictions/unlabeled.csv

How-to Develop

$ echo 'setup development environment'
$ git clone https://github.com/iainwo/kaggle.git
$ cd wids-datathon-2020/
$ make create_environment
$ conda activate wids_datathon_2020
$ make requirements

$ echo 'make some changes to the wids-datathon-2020 python module'
$ vim my-file.py

$ echo 'use the module'
$ make data
$ make model
$ make predictions

Other Commands

(wids_datathon_2020) talisman-2:wids-datathon-2020 iainwong$ make
Available rules:

clean               Delete all compiled Python files 
create_environment  Set up python interpreter environment 
data                Make Dataset 
data_final          Make Dataset for Kaggle Submission 
eda                 Generate visuals for feature EDA 
lint                Lint using flake8 
model               Make Model 
predictions         Make Predictions 
requirements        Install Python Dependencies 
requirements_dev    Install Development Deps 
sync_data_from_s3   Download Data from S3 
sync_data_to_s3     Upload Data to S3 
test                Run unit tests 
test_environment    Test python environment is setup correctly 

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.testrun.org

Project based on the kaggle-data-science project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wids-datathon-2020-0.1.5.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

wids_datathon_2020-0.1.5-py3-none-any.whl (31.0 kB view details)

Uploaded Python 3

File details

Details for the file wids-datathon-2020-0.1.5.tar.gz.

File metadata

  • Download URL: wids-datathon-2020-0.1.5.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for wids-datathon-2020-0.1.5.tar.gz
Algorithm Hash digest
SHA256 fd4c00c8609273336b85c60e32271d6ffe6323d8f852a3ba89bc25004eb96a24
MD5 1b516f4557de11122f59dd32797a6de6
BLAKE2b-256 ec4b161b63fb4ca14a3bfd3b9cb9cfa74aa9c03b8112ae3b6436499061e54813

See more details on using hashes here.

File details

Details for the file wids_datathon_2020-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: wids_datathon_2020-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 31.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for wids_datathon_2020-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 1989d35312a3cfb972e5f6aa78c3259185050e5189ee49867bb0417a6f13b315
MD5 2ff75146b65f6907586c294853add77e
BLAKE2b-256 03fa447112c2394572270d3811922ecea32246d4b24202ab8fcd901893fa326c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page