The challenge is to create a model that uses data from the first 24 hours of intensive care to predict patient survival. (Kaggle Proj) https://www.kaggle.com/c/widsdatathon2020/overview
Project description
wids_datathon_2020
The challenge is to create a model that uses data from the first 24 hours of intensive care to predict patient survival. (Kaggle Proj) https://www.kaggle.com/c/widsdatathon2020/overview
How-to Perform Inference
This project provides a publicly-accessible and straight forward way to perform batch or realtime inference based on WiDS Datathon 2020 data.
$ pip install wids-datathon-2020
$ mkdir -p data/external data/raw data/interim data/processed data/predictions models/
$ wget -O data/external/widsdatathon2020.zip https://github.com/iainwo/kaggle/blob/master/wids-datathon-2020/data/external/widsdatathon2020.zip
$ python -m wids_datathon_2020.data.unzip_dataset
$ python -m wids_datathon_2020.learn data/raw/training_v2.csv
$ python -m wids_datathon_2020.inference data/raw/unlabeled.csv
$ head data/predictions/unlabeled.csv
How-to Develop
$ echo 'setup development environment'
$ git clone https://github.com/iainwo/kaggle.git
$ cd wids-datathon-2020/
$ make create_environment
$ conda activate wids_datathon_2020
$ make requirements
$ echo 'make some changes to the wids-datathon-2020 python module'
$ vim my-file.py
$ echo 'use the module'
$ make data
$ make model
$ make predictions
Other Commands
(wids_datathon_2020) talisman-2:wids-datathon-2020 iainwong$ make
Available rules:
clean Delete all compiled Python files
create_environment Set up python interpreter environment
data Make Dataset
data_final Make Dataset for Kaggle Submission
eda Generate visuals for feature EDA
lint Lint using flake8
model Make Model
predictions Make Predictions
requirements Install Python Dependencies
requirements_dev Install Development Deps
sync_data_from_s3 Download Data from S3
sync_data_to_s3 Upload Data to S3
test Run unit tests
test_environment Test python environment is setup correctly
Project Organization
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
└── tox.ini <- tox file with settings for running tox; see tox.testrun.org
Project based on the kaggle-data-science project template.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file wids-datathon-2020-0.1.5.tar.gz
.
File metadata
- Download URL: wids-datathon-2020-0.1.5.tar.gz
- Upload date:
- Size: 22.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd4c00c8609273336b85c60e32271d6ffe6323d8f852a3ba89bc25004eb96a24 |
|
MD5 | 1b516f4557de11122f59dd32797a6de6 |
|
BLAKE2b-256 | ec4b161b63fb4ca14a3bfd3b9cb9cfa74aa9c03b8112ae3b6436499061e54813 |
File details
Details for the file wids_datathon_2020-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: wids_datathon_2020-0.1.5-py3-none-any.whl
- Upload date:
- Size: 31.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1989d35312a3cfb972e5f6aa78c3259185050e5189ee49867bb0417a6f13b315 |
|
MD5 | 2ff75146b65f6907586c294853add77e |
|
BLAKE2b-256 | 03fa447112c2394572270d3811922ecea32246d4b24202ab8fcd901893fa326c |