Skip to main content

Python package for creating labeled examples from wiki dumps

Project description

Wikipedia NER
-------------

Tool to train and obtain named entity recognition labeled examples
from Wikipedia dumps.

Usage in [IPython notebook](http://nbviewer.ipython.org/github/JonathanRaiman/wikipedia_ner/blob/master/Wikipedia%20to%20Named%20Entity%20Recognition.ipynb) (*nbviewer* link).

## Usage

Here is an example usage with the first 200 articles from the english wikipedia dump (dated lated 2013):

parseresult = wikipedia_ner.parse_dump("enwiki.bz2",
max_articles = 200)
most_common_category = wikipedia_ner.ParsedPage.categories_counter.most_common(1)[0][0]

most_common_category_children = [
parseresult.index2target[child] for child in list(wikipedia_ner.ParsedPage.categories[most_common_category].children)
]

"In '%s' the children are %r" % (
most_common_category,
", ".join(most_common_category_children)
)

#=> "In 'Category : Member states of the United Nations' the children are 'Afghanistan, Algeria, Andorra, Antigua and Barbuda, Azerbaijan, Angola, Albania'"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wikipedia-ner-0.0.14.tar.gz (74.8 kB view details)

Uploaded Source

File details

Details for the file wikipedia-ner-0.0.14.tar.gz.

File metadata

File hashes

Hashes for wikipedia-ner-0.0.14.tar.gz
Algorithm Hash digest
SHA256 e6117364408eee4faf03df34e5955af9925dc6efab67d05e40508eb18891820c
MD5 7fa1e04959c73238fbb5773f186e3241
BLAKE2b-256 132de32199076c56eeee2c1666b732ff822a3179122d52293ceeba063fd08499

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page