Skip to main content

Python package for creating labeled examples from wiki dumps

Project description

Wikipedia NER
-------------

Tool to train and obtain named entity recognition labeled examples
from Wikipedia dumps.

Usage in [IPython notebook](http://nbviewer.ipython.org/github/JonathanRaiman/wikipedia_ner/blob/master/Wikipedia%20to%20Named%20Entity%20Recognition.ipynb) (*nbviewer* link).

## Usage

Here is an example usage with the first 200 articles from the english wikipedia dump (dated lated 2013):

parseresult = wikipedia_ner.parse_dump("enwiki.bz2",
max_articles = 200)
most_common_category = wikipedia_ner.ParsedPage.categories_counter.most_common(1)[0][0]

most_common_category_children = [
parseresult.index2target[child] for child in list(wikipedia_ner.ParsedPage.categories[most_common_category].children)
]

"In '%s' the children are %r" % (
most_common_category,
", ".join(most_common_category_children)
)

#=> "In 'Category : Member states of the United Nations' the children are 'Afghanistan, Algeria, Andorra, Antigua and Barbuda, Azerbaijan, Angola, Albania'"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wikipedia-ner-0.0.16.tar.gz (74.8 kB view details)

Uploaded Source

File details

Details for the file wikipedia-ner-0.0.16.tar.gz.

File metadata

File hashes

Hashes for wikipedia-ner-0.0.16.tar.gz
Algorithm Hash digest
SHA256 24f794188dcb22fdeb30d6d9878f2a0449a24918b5d71501d257e566e72e2cbf
MD5 8985732fa02831d502ad671506aa71ec
BLAKE2b-256 69b9f1f0eafcadf35fae3d51023b2e469860f4dfd3c01ece5124765f5d351478

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page