Skip to main content

Python package for creating labeled examples from wiki dumps

Project description

Wikipedia NER
-------------

Tool to train and obtain named entity recognition labeled examples
from Wikipedia dumps.

Usage in [IPython notebook](http://nbviewer.ipython.org/github/JonathanRaiman/wikipedia_ner/blob/master/Wikipedia%20to%20Named%20Entity%20Recognition.ipynb) (*nbviewer* link).

## Usage

Here is an example usage with the first 200 articles from the english wikipedia dump (dated lated 2013):

parseresult = wikipedia_ner.parse_dump("enwiki.bz2",
max_articles = 200)
most_common_category = wikipedia_ner.ParsedPage.categories_counter.most_common(1)[0][0]

most_common_category_children = [
parseresult.index2target[child] for child in list(wikipedia_ner.ParsedPage.categories[most_common_category].children)
]

"In '%s' the children are %r" % (
most_common_category,
", ".join(most_common_category_children)
)

#=> "In 'Category : Member states of the United Nations' the children are 'Afghanistan, Algeria, Andorra, Antigua and Barbuda, Azerbaijan, Angola, Albania'"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wikipedia-ner-0.0.18.tar.gz (74.8 kB view details)

Uploaded Source

File details

Details for the file wikipedia-ner-0.0.18.tar.gz.

File metadata

File hashes

Hashes for wikipedia-ner-0.0.18.tar.gz
Algorithm Hash digest
SHA256 fa57248f0c3460ef98a90aee0879bf88730c70106144e00b93adaaf243a2ad33
MD5 52716bd8d97732ecddfeafe185d3304b
BLAKE2b-256 5a36e9a1d980cee616c08a029834132efce4ce8e21ed866420f2cc0e240be2f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page