Skip to main content

Python package for creating labeled examples from wiki dumps

Project description

Wikipedia NER
-------------

Tool to train and obtain named entity recognition labeled examples
from Wikipedia dumps.

Usage in [IPython notebook](http://nbviewer.ipython.org/github/JonathanRaiman/wikipedia_ner/blob/master/Wikipedia%20to%20Named%20Entity%20Recognition.ipynb) (*nbviewer* link).

## Usage

Here is an example usage with the first 200 articles from the english wikipedia dump (dated lated 2013):

parseresult = wikipedia_ner.parse_dump("enwiki.bz2",
max_articles = 200)
most_common_category = wikipedia_ner.ParsedPage.categories_counter.most_common(1)[0][0]

most_common_category_children = [
parseresult.index2target[child] for child in list(wikipedia_ner.ParsedPage.categories[most_common_category].children)
]

"In '%s' the children are %r" % (
most_common_category,
", ".join(most_common_category_children)
)

#=> "In 'Category : Member states of the United Nations' the children are 'Afghanistan, Algeria, Andorra, Antigua and Barbuda, Azerbaijan, Angola, Albania'"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wikipedia-ner-0.0.23.tar.gz (76.8 kB view details)

Uploaded Source

File details

Details for the file wikipedia-ner-0.0.23.tar.gz.

File metadata

File hashes

Hashes for wikipedia-ner-0.0.23.tar.gz
Algorithm Hash digest
SHA256 ed16a6ffa1c2779fef1a6a2208a2342a3853b55c3cd3a9255c4cb8c296908ab8
MD5 7c04f7f4c1f36c6d85c80ab0147669b0
BLAKE2b-256 f10d5ad7b4c2ad61583a235b05f01c74d4fcbcef4b690ae66456c33298321cf5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page