Skip to main content

Time series learning with Python.

Project description

Wildboar logo

wildboar

wildboar is a Python module for temporal machine learning and fast distance computations built on top of scikit-learn and numpy distributed under the BSD 3-Clause license.

It is currently maintained by Isak Samsten

Features

Data Classification Regression Explainability Metric Unsupervised Outlier
Repositories ShapeletForestClassifier ShapeletForestRegressor ShapeletForestCounterfactual UCR-suite ShapeletForestTransform IsolationShapeletForest
Classification (wildboar/ucr) ExtraShapeletTreesClassifier ExtraShapeletTreesRegressor KNearestCounterfactual MASS RandomShapeletEmbedding
Regression (wildboar/tsereg) RocketTreeClassifier RocketRegressor PrototypeCounterfactual DTW RocketTransform
Outlier detection (wildboar/outlier:easy) RocketClassifier RandomShapeletRegressor IntervalImportance DDTW IntervalTransform
RandomShapeletClassifier RocketTreeRegressor ShapeletImportance WDTW FeatureTransform
RocketForestClassifier RocketForestRegressor MSM MatrixProfileTransform
IntervalTreeClassifier IntervalTreeRegressor TWE Segmentation
IntervalForestClassifier IntervalForestRegressor LCSS Motif discovery
ProximityTreeClassifier ERP SAX
ProximityForestClassifier EDR PAA
HydraClassifier ADTW MatrixProfileTransform
KNeighborsClassifier HydraTransform
ElasticEnsembleClassifier KMeans with (W)DTW support
DilatedShapeletClassifier KMedoids
DilatedShapeletTransform

See the documentation for examples.

Installation

Binaries

wildboar is available through pip and can be installed with:

pip install wildboar

Universal binaries are compiled for Python 3.8, 3.9, 3.10 and 3.11 running on GNU/Linux, Windows and macOS.

Compilation

If you already have a working installation of numpy, scikit-learn, scipy and cython, compiling and installing wildboar is as simple as:

pip install .

To install the requirements, use:

pip install -r requirements.txt

For complete instructions see the documentation

Usage

from wildboar.ensemble import ShapeletForestClassifier
from wildboar.datasets import load_dataset
x_train, x_test, y_train, y_test = load_dataset("GunPoint", merge_train_test=False)
c = ShapeletForestClassifier()
c.fit(x_train, y_train)
c.score(x_test, y_test)

The User guide includes more detailed usage instructions.

Changelog

The changelog records a history of notable changes to wildboar.

Development

Contributions are welcome! The developer's guide has detailed information about contributing code and more!

In short, pull requests should:

  • be well motivated
  • be formatted using Black
  • add relevant tests
  • add relevant documentation

Source code

You can check the latest sources with the command:

git clone https://github.com/wildboar-foundation/wildboar

Documentation

Citation

If you use wildboar in a scientific publication, I would appreciate citations to the paper:

  • Karlsson, I., Papapetrou, P. Boström, H., 2016. Generalized Random Shapelet Forests. In the Data Mining and Knowledge Discovery Journal

    • ShapeletForestClassifier
  • Isak Samsten, 2020. isaksamsten/wildboar: wildboar. Zenodo. doi:10.5281/zenodo.4264063

  • Karlsson, I., Rebane, J., Papapetrou, P. et al. Locally and globally explainable time series tweaking. Knowl Inf Syst 62, 1671–1700 (2020)

    • ShapeletForestCounterfactual
    • KNearestCounterfactual

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wildboar-1.2.0.tar.gz (3.7 MB view details)

Uploaded Source

Built Distributions

wildboar-1.2.0-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

wildboar-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

wildboar-1.2.0-cp312-cp312-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

wildboar-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

wildboar-1.2.0-cp312-cp312-macosx_10_9_universal2.whl (7.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

wildboar-1.2.0-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

wildboar-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

wildboar-1.2.0-cp311-cp311-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

wildboar-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

wildboar-1.2.0-cp311-cp311-macosx_10_9_universal2.whl (7.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

wildboar-1.2.0-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

wildboar-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

wildboar-1.2.0-cp310-cp310-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

wildboar-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

wildboar-1.2.0-cp310-cp310-macosx_10_9_universal2.whl (7.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

wildboar-1.2.0-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

wildboar-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

wildboar-1.2.0-cp39-cp39-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

wildboar-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

wildboar-1.2.0-cp39-cp39-macosx_10_9_universal2.whl (7.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file wildboar-1.2.0.tar.gz.

File metadata

  • Download URL: wildboar-1.2.0.tar.gz
  • Upload date:
  • Size: 3.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for wildboar-1.2.0.tar.gz
Algorithm Hash digest
SHA256 1a08d7881d68021b0b589b3cf24ed9aaebbd7e088d02ad4195d20b72fd717287
MD5 5a287f34ae5a1025782be080611963e9
BLAKE2b-256 b0aa2838dfd42442fdbc8cf84bbd687764854cdb93eb553cf8d08f44a86a2a8f

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9593218f618473591d776a995600922562d8b1b520aebd4cbe507538c47cc951
MD5 444cb43f302bd6c98167fcc931345d1f
BLAKE2b-256 0ba522269d156711c876be9b53a7a203e244b1f44346fa9a85d4cf85ec5bbef0

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a576de29dc6b7ef43fc686623565b23472736e096b32d848894ce05922b1af3
MD5 95c6d6750a6d0a4f515f0cbba008ff69
BLAKE2b-256 f3827a119ee53fbf485e1732054372f31b5f9c6338bac68bdc22c3c2d4d5fab8

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0592a78a311899933beb8fd15e70f4337e42600017552cb48168ea114aca10e3
MD5 4aa28ed6c2a77bb498000c2988a1ea44
BLAKE2b-256 712130cbda6033f1905aacba65ce315e3f0dd5f6c008fd8467a56d21d052d384

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 229683c6719c364cfc3b75ff436f5a3724289823bdf3b35a35c278289e8fa186
MD5 fa14faa146fd661a95bdcf3ffe42729b
BLAKE2b-256 1befb11a61fbbac62365316de07ee36944dd9a9d0be59e1c2979da3a0fa17a73

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 335109ec78525e0eb29256bc1ce124d8b9872348dfc046ab4b112dce7b809d56
MD5 f01b28b39d513a1d589640d9c5417271
BLAKE2b-256 0c4ab76f103f1e8f083d4e6ce1e9e4143660546f53aa4f4f3f3412e04e254226

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 289785bb15561d79a0a326034acc1f7274abc0a557c146f887cf45ea1e34963f
MD5 d758a6d2b2a2d5394c9ef1ebcae0370f
BLAKE2b-256 5db3ded4b6f999ce7372545524d96a0022aaf92cb48480f2be762d9877fb350c

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e4584b720be303557d4f947df51aa0a5d9df2578593caedab736dc0083f12f4
MD5 efa411a9f9e57a33e6beea5436a734e5
BLAKE2b-256 48e0d0576a612b6ac293cb3c0c9253f413789754549ebdbf710c3c94aadb5e70

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 be8225157b0ece76e58e8e921a7bc9da7ba33eca4231008e6f84bc0e82974e2a
MD5 33d81e61780e7a3ceb44d1a469ef4150
BLAKE2b-256 3d8ed753f540a2d560e2f8b7bc61ce63b7d46b31ff51beba657b6ff9a7969551

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8de11ec4c10427a820d9e7b606a0f89c4aebe1760c54f7d8aa110cd6084ad0b5
MD5 87efee37988050387dd4da41251a7c64
BLAKE2b-256 ade32d9751e2dbb6f7cb12177dbcac007fba8575550660f38b7fa1c62cc908f4

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9173d6dc6a21193c152d719d10b9f361db5c99a5d326c3c6eb1b8c96165b9382
MD5 cf566b0ed3f27642c06dd2eab96d7a33
BLAKE2b-256 be3af3e6ce500acfc6df72cde2179402a6225acfe13ef2a63cc0c45b4b114586

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6d843cba7ff746a47af39c840bc063b00ad76258bec90f9a9f0dda6ba0a1be55
MD5 2c1a56cb07d5907eabc4258ddf7db267
BLAKE2b-256 7cd0201ee2e40e15b8fddb50bea431d450f208432bc7a45759af59bc9c553aad

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57583b65aa54f775c35750427f2cad42f36c2b04d4458b09259b15aa748dc09f
MD5 1f88024aa4d7bc9a25b8c1c63c1bc93f
BLAKE2b-256 bffc3ac28a9a2b8e2e53daaa67cb88ae42d1ebbf9b6f0e20450272a65270e3e5

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 13103f5f608749d2e400462b11e9ff324695dbb63a6591d199d010c2963c0c1e
MD5 351bb7d971fd0719ce42fbc8ecefb219
BLAKE2b-256 1c2b266c5fc1c837f85351327b7a9e0446ebb287d08e0203edb1ba0c8476352c

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ba88a351787ed824dbb8bc1684a44fc0c91d24c95536b0e3a36c6caee48e6f7
MD5 abc9973be0c0c86f2f6109339df0bccb
BLAKE2b-256 7d7d493a7a0160424b8c308ecb4beb89037e7629e9f271407e4668ccd9e0cf48

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e14b58543f9a3d60c899246176b80399457fb46b93de50081afe5b868510e17f
MD5 1d52bade9d862ffa68761aeb802b7f61
BLAKE2b-256 525e56a1ec95dd029cf238ba23670e5c143679764076970aff79e82086f4c54c

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: wildboar-1.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for wildboar-1.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e1be2dc73ab63e016ad58eef74556bdc97666cef34b246af1c491e3fc19a2ec8
MD5 ef006623031b13cddf4ad809c7efc165
BLAKE2b-256 4de52e01a04abdea0f7b320ababf921ac147e5d79b461a47123217e7186a906b

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4fac44fdc7effb2849e109c47ad40e47bdff235b66da61ae310552ed7b0fa078
MD5 31419f8fb1bd342e390c918b26ad41e6
BLAKE2b-256 5414f9485f2da0fcf03ea1df7542c71d34b9eb0fe18d3df5c16b72a7c9381b03

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c05e0a4f6b5360412849f1e5c8ee7cfeb89414f063c4baef7c2ba5a99bda5cab
MD5 88c8f10819c0a755b1e5692aaeb84ba2
BLAKE2b-256 af37372b9a6bde98326882d26df4f7ba6008c3bb777154dd959fe9db48afc2d4

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ede888a15b36005926460f8331e705f77d8041ae5caf5a62c6cf717b13e556fa
MD5 6cba26341dbc9852871dea528d0ab8b2
BLAKE2b-256 806db8c22c5927310709d823b8e496089db33cdff808e9b0cc33a3b9d3d28129

See more details on using hashes here.

File details

Details for the file wildboar-1.2.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for wildboar-1.2.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 30324addc80a8e74264c0692b308feea455d2f0a9df1251836eb95b818fb6c3c
MD5 c324a2dd9f726c0d55c7ecffd58bd6fd
BLAKE2b-256 0b372c48a7c280a6cf3e5187313df12021d88aa83e0ab7aa73bbdc763a6d0331

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page