Time series learning with Python.
Project description
wildboar
wildboar is a Python module for temporal machine learning and fast distance computations built on top of scikit-learn and numpy distributed under the BSD 3-Clause license.
It is currently maintained by Isak Samsten
Features
Data | Classification | Regression | Explainability | Metric | Unsupervised | Outlier |
---|---|---|---|---|---|---|
Repositories | ShapeletForestClassifier |
ShapeletForestRegressor |
ShapeletForestCounterfactual |
UCR-suite | ShapeletForestTransform |
IsolationShapeletForest |
Classification (wildboar/ucr ) |
ExtraShapeletTreesClassifier |
ExtraShapeletTreesRegressor |
KNearestCounterfactual |
MASS | RandomShapeletEmbedding |
|
Regression (wildboar/tsereg ) |
RocketTreeClassifier |
RocketRegressor |
PrototypeCounterfactual |
DTW | RocketTransform |
|
Outlier detection (wildboar/outlier:easy ) |
RocketClassifier |
RandomShapeletRegressor |
IntervalImportance |
DDTW | IntervalTransform |
|
RandomShapeletClassifier |
RocketTreeRegressor |
ShapeletImportance |
WDTW | FeatureTransform |
||
RocketForestClassifier |
RocketForestRegressor |
MSM | MatrixProfileTransform |
|||
IntervalTreeClassifier |
IntervalTreeRegressor |
TWE | Segmentation | |||
IntervalForestClassifier |
IntervalForestRegressor |
LCSS | Motif discovery | |||
ProximityTreeClassifier |
ERP | SAX |
||||
ProximityForestClassifier |
EDR | PAA |
||||
HydraClassifier |
ADTW | MatrixProfileTransform |
||||
KNeighborsClassifier |
HydraTransform |
|||||
ElasticEnsembleClassifier |
KMeans with (W)DTW support |
|||||
DilatedShapeletClassifier |
KMedoids |
|||||
DilatedShapeletTransform |
See the documentation for examples.
Installation
Binaries
wildboar
is available through pip
and can be installed with:
pip install wildboar
Universal binaries are compiled for Python 3.8, 3.9, 3.10 and 3.11 running on GNU/Linux, Windows and macOS.
Compilation
If you already have a working installation of numpy, scikit-learn, scipy and cython, compiling and installing wildboar is as simple as:
pip install .
To install the requirements, use:
pip install -r requirements.txt
For complete instructions see the documentation
Usage
from wildboar.ensemble import ShapeletForestClassifier
from wildboar.datasets import load_dataset
x_train, x_test, y_train, y_test = load_dataset("GunPoint", merge_train_test=False)
c = ShapeletForestClassifier()
c.fit(x_train, y_train)
c.score(x_test, y_test)
The User guide includes more detailed usage instructions.
Changelog
The changelog records a
history of notable changes to wildboar
.
Development
Contributions are welcome! The developer's guide has detailed information about contributing code and more!
In short, pull requests should:
- be well motivated
- be formatted using Black
- add relevant tests
- add relevant documentation
Source code
You can check the latest sources with the command:
git clone https://github.com/wildboar-foundation/wildboar
Documentation
- HTML documentation: https://wildboar.dev
Citation
If you use wildboar
in a scientific publication, I would appreciate
citations to the paper:
-
Karlsson, I., Papapetrou, P. Boström, H., 2016. Generalized Random Shapelet Forests. In the Data Mining and Knowledge Discovery Journal
ShapeletForestClassifier
-
Isak Samsten, 2020. isaksamsten/wildboar: wildboar. Zenodo. doi:10.5281/zenodo.4264063
-
Karlsson, I., Rebane, J., Papapetrou, P. et al. Locally and globally explainable time series tweaking. Knowl Inf Syst 62, 1671–1700 (2020)
ShapeletForestCounterfactual
KNearestCounterfactual
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file wildboar-1.2.0.tar.gz
.
File metadata
- Download URL: wildboar-1.2.0.tar.gz
- Upload date:
- Size: 3.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a08d7881d68021b0b589b3cf24ed9aaebbd7e088d02ad4195d20b72fd717287 |
|
MD5 | 5a287f34ae5a1025782be080611963e9 |
|
BLAKE2b-256 | b0aa2838dfd42442fdbc8cf84bbd687764854cdb93eb553cf8d08f44a86a2a8f |
File details
Details for the file wildboar-1.2.0-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9593218f618473591d776a995600922562d8b1b520aebd4cbe507538c47cc951 |
|
MD5 | 444cb43f302bd6c98167fcc931345d1f |
|
BLAKE2b-256 | 0ba522269d156711c876be9b53a7a203e244b1f44346fa9a85d4cf85ec5bbef0 |
File details
Details for the file wildboar-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 14.3 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a576de29dc6b7ef43fc686623565b23472736e096b32d848894ce05922b1af3 |
|
MD5 | 95c6d6750a6d0a4f515f0cbba008ff69 |
|
BLAKE2b-256 | f3827a119ee53fbf485e1732054372f31b5f9c6338bac68bdc22c3c2d4d5fab8 |
File details
Details for the file wildboar-1.2.0-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 5.5 MB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0592a78a311899933beb8fd15e70f4337e42600017552cb48168ea114aca10e3 |
|
MD5 | 4aa28ed6c2a77bb498000c2988a1ea44 |
|
BLAKE2b-256 | 712130cbda6033f1905aacba65ce315e3f0dd5f6c008fd8467a56d21d052d384 |
File details
Details for the file wildboar-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl
- Upload date:
- Size: 5.6 MB
- Tags: CPython 3.12, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 229683c6719c364cfc3b75ff436f5a3724289823bdf3b35a35c278289e8fa186 |
|
MD5 | fa14faa146fd661a95bdcf3ffe42729b |
|
BLAKE2b-256 | 1befb11a61fbbac62365316de07ee36944dd9a9d0be59e1c2979da3a0fa17a73 |
File details
Details for the file wildboar-1.2.0-cp312-cp312-macosx_10_9_universal2.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp312-cp312-macosx_10_9_universal2.whl
- Upload date:
- Size: 7.4 MB
- Tags: CPython 3.12, macOS 10.9+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 335109ec78525e0eb29256bc1ce124d8b9872348dfc046ab4b112dce7b809d56 |
|
MD5 | f01b28b39d513a1d589640d9c5417271 |
|
BLAKE2b-256 | 0c4ab76f103f1e8f083d4e6ce1e9e4143660546f53aa4f4f3f3412e04e254226 |
File details
Details for the file wildboar-1.2.0-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 289785bb15561d79a0a326034acc1f7274abc0a557c146f887cf45ea1e34963f |
|
MD5 | d758a6d2b2a2d5394c9ef1ebcae0370f |
|
BLAKE2b-256 | 5db3ded4b6f999ce7372545524d96a0022aaf92cb48480f2be762d9877fb350c |
File details
Details for the file wildboar-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 13.6 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e4584b720be303557d4f947df51aa0a5d9df2578593caedab736dc0083f12f4 |
|
MD5 | efa411a9f9e57a33e6beea5436a734e5 |
|
BLAKE2b-256 | 48e0d0576a612b6ac293cb3c0c9253f413789754549ebdbf710c3c94aadb5e70 |
File details
Details for the file wildboar-1.2.0-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 5.5 MB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | be8225157b0ece76e58e8e921a7bc9da7ba33eca4231008e6f84bc0e82974e2a |
|
MD5 | 33d81e61780e7a3ceb44d1a469ef4150 |
|
BLAKE2b-256 | 3d8ed753f540a2d560e2f8b7bc61ce63b7d46b31ff51beba657b6ff9a7969551 |
File details
Details for the file wildboar-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 5.6 MB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8de11ec4c10427a820d9e7b606a0f89c4aebe1760c54f7d8aa110cd6084ad0b5 |
|
MD5 | 87efee37988050387dd4da41251a7c64 |
|
BLAKE2b-256 | ade32d9751e2dbb6f7cb12177dbcac007fba8575550660f38b7fa1c62cc908f4 |
File details
Details for the file wildboar-1.2.0-cp311-cp311-macosx_10_9_universal2.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp311-cp311-macosx_10_9_universal2.whl
- Upload date:
- Size: 7.4 MB
- Tags: CPython 3.11, macOS 10.9+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9173d6dc6a21193c152d719d10b9f361db5c99a5d326c3c6eb1b8c96165b9382 |
|
MD5 | cf566b0ed3f27642c06dd2eab96d7a33 |
|
BLAKE2b-256 | be3af3e6ce500acfc6df72cde2179402a6225acfe13ef2a63cc0c45b4b114586 |
File details
Details for the file wildboar-1.2.0-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6d843cba7ff746a47af39c840bc063b00ad76258bec90f9a9f0dda6ba0a1be55 |
|
MD5 | 2c1a56cb07d5907eabc4258ddf7db267 |
|
BLAKE2b-256 | 7cd0201ee2e40e15b8fddb50bea431d450f208432bc7a45759af59bc9c553aad |
File details
Details for the file wildboar-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 13.0 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 57583b65aa54f775c35750427f2cad42f36c2b04d4458b09259b15aa748dc09f |
|
MD5 | 1f88024aa4d7bc9a25b8c1c63c1bc93f |
|
BLAKE2b-256 | bffc3ac28a9a2b8e2e53daaa67cb88ae42d1ebbf9b6f0e20450272a65270e3e5 |
File details
Details for the file wildboar-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 5.5 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 13103f5f608749d2e400462b11e9ff324695dbb63a6591d199d010c2963c0c1e |
|
MD5 | 351bb7d971fd0719ce42fbc8ecefb219 |
|
BLAKE2b-256 | 1c2b266c5fc1c837f85351327b7a9e0446ebb287d08e0203edb1ba0c8476352c |
File details
Details for the file wildboar-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 5.6 MB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1ba88a351787ed824dbb8bc1684a44fc0c91d24c95536b0e3a36c6caee48e6f7 |
|
MD5 | abc9973be0c0c86f2f6109339df0bccb |
|
BLAKE2b-256 | 7d7d493a7a0160424b8c308ecb4beb89037e7629e9f271407e4668ccd9e0cf48 |
File details
Details for the file wildboar-1.2.0-cp310-cp310-macosx_10_9_universal2.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp310-cp310-macosx_10_9_universal2.whl
- Upload date:
- Size: 7.4 MB
- Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e14b58543f9a3d60c899246176b80399457fb46b93de50081afe5b868510e17f |
|
MD5 | 1d52bade9d862ffa68761aeb802b7f61 |
|
BLAKE2b-256 | 525e56a1ec95dd029cf238ba23670e5c143679764076970aff79e82086f4c54c |
File details
Details for the file wildboar-1.2.0-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e1be2dc73ab63e016ad58eef74556bdc97666cef34b246af1c491e3fc19a2ec8 |
|
MD5 | ef006623031b13cddf4ad809c7efc165 |
|
BLAKE2b-256 | 4de52e01a04abdea0f7b320ababf921ac147e5d79b461a47123217e7186a906b |
File details
Details for the file wildboar-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 13.0 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4fac44fdc7effb2849e109c47ad40e47bdff235b66da61ae310552ed7b0fa078 |
|
MD5 | 31419f8fb1bd342e390c918b26ad41e6 |
|
BLAKE2b-256 | 5414f9485f2da0fcf03ea1df7542c71d34b9eb0fe18d3df5c16b72a7c9381b03 |
File details
Details for the file wildboar-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 5.5 MB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c05e0a4f6b5360412849f1e5c8ee7cfeb89414f063c4baef7c2ba5a99bda5cab |
|
MD5 | 88c8f10819c0a755b1e5692aaeb84ba2 |
|
BLAKE2b-256 | af37372b9a6bde98326882d26df4f7ba6008c3bb777154dd959fe9db48afc2d4 |
File details
Details for the file wildboar-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 5.6 MB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ede888a15b36005926460f8331e705f77d8041ae5caf5a62c6cf717b13e556fa |
|
MD5 | 6cba26341dbc9852871dea528d0ab8b2 |
|
BLAKE2b-256 | 806db8c22c5927310709d823b8e496089db33cdff808e9b0cc33a3b9d3d28129 |
File details
Details for the file wildboar-1.2.0-cp39-cp39-macosx_10_9_universal2.whl
.
File metadata
- Download URL: wildboar-1.2.0-cp39-cp39-macosx_10_9_universal2.whl
- Upload date:
- Size: 7.4 MB
- Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30324addc80a8e74264c0692b308feea455d2f0a9df1251836eb95b818fb6c3c |
|
MD5 | c324a2dd9f726c0d55c7ecffd58bd6fd |
|
BLAKE2b-256 | 0b372c48a7c280a6cf3e5187313df12021d88aa83e0ab7aa73bbdc763a6d0331 |