Skip to main content

Wild Cluster Bootstrap Inference for Linear Models in Python

Project description

wildboottest

PyPI PyPI - Downloads

wildboottest implements multiple fast wild cluster bootstrap algorithms as developed in Roodman et al (2019) and MacKinnon, Nielsen & Webb (2022).

It has similar, but more limited functionality than Stata's boottest, R's fwildcusterboot or Julia's WildBootTests.jl. It supports

At the moment, wildboottest only computes wild cluster bootstrapped p-values, and no confidence intervals.

Other features that are currently not supported:

  • The subcluster bootstrap (MacKinnon and Webb 2018).
  • Confidence intervals formed by inverting the test and iteratively searching for bounds.
  • Multiway clustering.

Direct support for statsmodels and linearmodels is work in progress.

If you'd like to cooperate, either send us an email or comment in the issues section!

Installation

You can install wildboottest from PyPi by running

pip install wildboottest

Example

import pandas as pd
import statsmodels.formula.api as sm
from wildboottest.wildboottest import wildboottest

df = pd.read_csv("https://raw.github.com/vincentarelbundock/Rdatasets/master/csv/sandwich/PetersenCL.csv")
model = sm.ols(formula='y ~ x', data=df)

wildboottest(model, param = "x", cluster = df.firm, B = 9999, bootstrap_type = '11')
# | param   |   statistic |   p-value |
# |:--------|------------:|----------:|
# | x       |      20.453 |     0.000 |

wildboottest(model, param = "x", cluster = df.firm, B = 9999, bootstrap_type = '31')
# | param   |   statistic |   p-value |
# |:--------|------------:|----------:|
# | x       |      30.993 |     0.000 |

# bootstrap inference for all coefficients
wildboottest(model, cluster = df.firm, B = 9999, bootstrap_type = '31')
# | param     |   statistic |   p-value |
# |:----------|------------:|----------:|
# | Intercept |       0.443 |     0.655 |
# | x         |      20.453 |     0.000 |

# non-clustered wild bootstrap inference
wildboottest(model, B = 9999, bootstrap_type = '11')
# | param     |   statistic |   p-value |
# |:----------|------------:|----------:|
# | Intercept |       1.047 |     0.295 |
# | x         |      36.448 |     0.000 |

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wildboottest-0.3.2.tar.gz (12.8 kB view details)

Uploaded Source

Built Distribution

wildboottest-0.3.2-py3-none-any.whl (12.2 kB view details)

Uploaded Python 3

File details

Details for the file wildboottest-0.3.2.tar.gz.

File metadata

  • Download URL: wildboottest-0.3.2.tar.gz
  • Upload date:
  • Size: 12.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for wildboottest-0.3.2.tar.gz
Algorithm Hash digest
SHA256 f705e87c6bc5f8dfeca6a12edb666a744072c91b702cd4041560839eb4f2e418
MD5 92bb11f83a1fbdc0ef437f26d2012a46
BLAKE2b-256 9c4acca3fc48321c9c896b4c7db26cf44c1b54a77c3e0db0e622052a405b7b3a

See more details on using hashes here.

File details

Details for the file wildboottest-0.3.2-py3-none-any.whl.

File metadata

File hashes

Hashes for wildboottest-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 886762642098358ddeb190656fc05c17e26d5c024ccff9f8863627ce3392902f
MD5 d1040edb5c1336c9570832435daa6dd4
BLAKE2b-256 b275419e54d92b1b97128a12f8dcd53b40b5144a33a69026496287a3ab7557e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page