Skip to main content

Tools for using wildlife re-identification datasets.

Project description

GitHub issues GitHub pull requests GitHub contributors GitHub forks GitHub stars GitHub watchers License

Project logo

A tool-kit for Wildlife Individual Identification that provides a wide variety of pre-trained models for inference and fine-tuning.

Documentation · Report Bug · Request Feature

Our other projects

Introduction

The wildlife-tools library offers a simple interface for various tasks in the Wildlife Re-Identification domain. It covers use cases such as training, feature extraction, similarity calculation, image retrieval, and classification. It complements the wildlife-datasets library, which acts as dataset repository. All datasets there can be used in combination with WildlifeDataset component, which serves for loading extracting images and image tensors other tasks.

More information can be found in Documentation

Installation

To install wildlife-tools, you can build it from scratch or use pre-build Pypi package.

Using Pypi

pip install wildlife-tools

Building from scratch

Clone the repository using git and install it.

git clone git@github.com:WildlifeDatasets/wildlife-tools.git

cd wildlife-tools
pip install -e .

Modules in the in the wildlife-tools

  • The data module provides tools for creating instances of the WildlifeDataset.
  • The train module offers tools for fine-tuning feature extractors on the WildlifeDataset.
  • The features module provides tools for extracting features from the WildlifeDataset using various extractors.
  • The similarity module provides tools for constructing a similarity matrix from query and database features.
  • The inference module offers tools for creating predictions using the similarity matrix.

Relations between modules:

  graph TD;
      A[Data]-->|WildlifeDataset|B[Features]
      A-->|WildlifeDataset|C;
      C[Train]-->|finetuned extractor|B;
      B-->|query and database features|D[Similarity]
      D-->|similarity matrix|E[Inference]

Example

1. Create WildlifeDataset

Using metadata from wildlife-datasets, create WildlifeDataset object for the MacaqueFaces dataset.

from wildlife_datasets.datasets import MacaqueFaces
from wildlife_tools.data import WildlifeDataset
import torchvision.transforms as T

metadata = MacaqueFaces('datasets/MacaqueFaces')
transform = T.Compose([T.Resize([224, 224]), T.ToTensor(), T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))])
dataset = WildlifeDataset(metadata.df, metadata.root, transform=transform)

Optionally, split metadata into subsets. In this example, query is first 100 images and rest are in database.

dataset_database = WildlifeDataset(metadata.df.iloc[100:,:], metadata.root, transform=transform)
dataset_query = WildlifeDataset(metadata.df.iloc[:100,:], metadata.root, transform=transform)

2. Extract features

Extract features using MegaDescriptor Tiny, downloaded from HuggingFace hub.

from wildlife_tools.features import DeepFeatures

name = 'hf-hub:BVRA/MegaDescriptor-T-224'
extractor = DeepFeatures(timm.create_model(name, num_classes=0, pretrained=True))
query, database = extractor(dataset_query), extractor(dataset_database)

3. Calculate similarity

Calculate cosine similarity between query and database deep features.

from wildlife_tools.similarity import CosineSimilarity

similarity_function = CosineSimilarity()
similarity = similarity_function(query, database)

4. Evaluate

Use the cosine similarity in nearest neigbour classifier and get predictions.

classifier = KnnClassifier(k=1, database_labels=dataset_database.labels_string)
predictions = classifier(similarity['cosine'])
accuracy = np.mean(dataset_database.labels_string == predictions)

Citation

If you like our package, please cite us.

@InProceedings{Cermak_2024_WACV,
    author    = {\v{C}erm\'ak, Vojt\v{e}ch and Picek, Luk\'a\v{s} and Adam, Luk\'a\v{s} and Papafitsoros, Kostas},
    title     = {{WildlifeDatasets: An Open-Source Toolkit for Animal Re-Identification}},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2024},
    pages     = {5953-5963}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wildlife-tools-0.0.9.tar.gz (22.3 kB view details)

Uploaded Source

Built Distribution

wildlife_tools-0.0.9-py3-none-any.whl (25.6 kB view details)

Uploaded Python 3

File details

Details for the file wildlife-tools-0.0.9.tar.gz.

File metadata

  • Download URL: wildlife-tools-0.0.9.tar.gz
  • Upload date:
  • Size: 22.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.4

File hashes

Hashes for wildlife-tools-0.0.9.tar.gz
Algorithm Hash digest
SHA256 6800b8282149a6af75c07d8ddae339ac4b5cbc2e82790bc5893bcf5f5fb61e82
MD5 68126186db61799bf6d0750f46419c06
BLAKE2b-256 4d7109a64ca02da9d4f4cbd75a02ec934904ea1a69aa5cbf26e9e5f53f37e2da

See more details on using hashes here.

File details

Details for the file wildlife_tools-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for wildlife_tools-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 b9913bddc9c497e9e0616cce0ac7a794d467c891515cd15abb2e5a8d262f54b0
MD5 f6fb2c11791dda4ac33b637eee689112
BLAKE2b-256 18af623183cbca07bc009cec54c58a0e840fe99cf4937176bc5cc3eefeed4f73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page