Skip to main content

Converts Machine Learning models to ONNX for use in Windows ML

Project description

WinMLTools provide following tools for Windows ML:

Model Conversion

WinMLTools enables you to convert models from different machine learning toolkits into ONNX for use with Windows ML. Currently the following toolkits are supported:

  • apple CoreML

  • keras

  • scikit-learn

  • lightgbm

  • xgboost

  • libSVM

  • tensorflow (experimental)

Here is a simple example to convert a Core ML model:

from coremltools.models.utils import load_spec
from winmltools import convert_coreml
model_coreml = load_spec('example.mlmodel')
model_onnx = convert_coreml(model_coreml, 10, name='ExampleModel')

Post Training Weight Quantization

WinMLTools provides quantization tool to reduce the memory footprint of the model.

Here is an example to convert an ONNX model to a quantized ONNX model:

import winmltools

model = winmltools.load_model('model.onnx')
quantized_model = winmltools.quantize(model, per_channel=True, nbits=8, use_dequantize_linear=True)
winmltools.save_model(quantized_model, 'quantized.onnx')

Dependencies

In order to convert from different toolkits, you may have to install the following packages for different converters:

Toolkit

Source

keras

https://pypi.org/project/Keras

tensorflow

https://pypi.org/project/tensorflow

scikit-learn

https://pypi.org/project/scikit-learn

lightgbm

https://pypi.org/project/lightgbm

xgboost

https://pypi.org/project/xgboost

libsvm

You can download libsvm wheel from various web sources. One example can be found here: https://www.lfd.uci.edu/~gohlke/pythonlibs/#libsvm

coremltools

Currenlty coreml does not distribute coreml packaging on windows. You can install from source: pip install git+https://github.com/apple/coremltools

For more information on WinMLTools, you can go to Convert ML models to ONNX with WinMLTools

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

winmltools-1.5.1.tar.gz (26.9 kB view details)

Uploaded Source

Built Distribution

winmltools-1.5.1-py2.py3-none-any.whl (40.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file winmltools-1.5.1.tar.gz.

File metadata

  • Download URL: winmltools-1.5.1.tar.gz
  • Upload date:
  • Size: 26.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.0 CPython/3.6.9

File hashes

Hashes for winmltools-1.5.1.tar.gz
Algorithm Hash digest
SHA256 99fce78536866b235715d0489ddbae6df714f8beeae6bb54cae231fbd5e708f1
MD5 d12b8cc31ddb1361ecad60829b7afceb
BLAKE2b-256 8f16aa6d07bb7b873659dbe950194895c7253fa74c86b872ee3bb80c3dc7f547

See more details on using hashes here.

File details

Details for the file winmltools-1.5.1-py2.py3-none-any.whl.

File metadata

  • Download URL: winmltools-1.5.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 40.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.0 CPython/3.6.9

File hashes

Hashes for winmltools-1.5.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 af343551272c305151b0f22b2f7d4fa4056b94bc02ebd2afdd378ee9f92e5d63
MD5 558be2f20da0b94b7b3c6e4fd17e7713
BLAKE2b-256 b7fccbf8213110fdff2fec65ebef9069e927cd2bd737458db67c435fc2a1f96f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page