Skip to main content

Converts Machine Learning models to ONNX for use in Windows ML

Project description

Introduction

WinMLTools enables you to convert models from different machine learning toolkits into ONNX for use with Windows ML. Currently the following toolkits are supported:

  • Apple Core ML

  • scikit-learn (subset of models convertible to ONNX)

  • xgboost

  • libSVM

  • RevoScalePy

  • Keras

Install

pip install winmltools

Dependancies

scikit-learn is needed to convert a scikit-learn model, coremltools for Apple Core ML.

Example

Here is a simple example to convert a Core ML model:

import winmltools
import coremltools

model_coreml = coremltools.utils.load_spec("image_recognition.mlmodel")
model_onnx = winmltools.convert.convert_coreml(model_coreml, "Image_Reco")

# Save as text
winmltools.utils.save_text(model_onnx, "image_recognition.json")

# Save as protobuf
winmltools.utils.save_model(model_onnx, "image_recognition.onnx")

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Built Distribution

winmltools-1.2.0.803-py2.py3-none-any.whl (22.8 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page