Windows.Media.Ocr
Project description
WinOCR
Installation
pip install winocr
Full install
pip install winocr[all]
Usage
Pillow
import winocr
from PIL import Image
img = Image.open('test.jpg')
print((await winocr.recognize_pil(img, 'ja')).text)
OpenCV
import winocr
import cv2
img = cv2.imread('test.jpg')
print((await winocr.recognize_cv2(img, 'ja')).text)
Connect to local runtime on Colaboratory
Web API
Run server
pip install winocr[api]
winocr_serve
curl
curl localhost:8000?lang=ja --data-binary @test.jpg
Python
import requests
bytes = open('test.jpg', 'rb').read()
requests.post('http://localhost:8000/?lang=ja', bytes).json()['text']
You can run OCR with the Colaboratory runtime with ./ngrok http 8000
from PIL import Image
from io import BytesIO
img = Image.open('test.jpg')
# Preprocessing
buf = BytesIO()
img.save(buf, format='JPEG')
requests.post('https://15a5fabf0d78.ngrok.io/?lang=ja', buf.getvalue()).json()['text']
import cv2
import requests
img = cv2.imread('test.jpg')
# Preprocessing
requests.post('https://15a5fabf0d78.ngrok.io/?lang=ja', cv2.imencode('.jpg', img)[1].tobytes()).json()['text']
JavaScript
If you only need to recognize Chrome and English, you can also consider the Text Detection API.
// File
const file = document.querySelector('[type=file]').files[0]
await fetch('http://localhost:8000/', {method: 'POST', body: file}).then(r => r.json())
// Blob
const blob = await fetch('https://image.itmedia.co.jp/ait/articles/1706/15/news015_16.jpg').then(r=>r.blob())
await fetch('http://localhost:8000/?lang=ja', {method: 'POST', body: blob}).then(r => r.json())
It is also possible to run OCR Server on Windows Server.
Information that can be obtained
You can get angle, text, line, word, BoundingBox.
import pprint
result = await winocr.recognize_pil(img, 'ja')
pprint.pprint({
'text_angle': result.text_angle,
'text': result.text,
'lines': [{
'text': line.text,
'words': [{
'bounding_rect': {'x': word.bounding_rect.x, 'y': word.bounding_rect.y, 'width': word.bounding_rect.width, 'height': word.bounding_rect.height},
'text': word.text
} for word in line.words]
} for line in result.lines]
})
Language installation
# Run as Administrator
Add-WindowsCapability -Online -Name "Language.OCR~~~en-US~0.0.1.0"
Add-WindowsCapability -Online -Name "Language.OCR~~~ja-JP~0.0.1.0"
# Search for installed languages
Get-WindowsCapability -Online -Name "Language.OCR*"
# State: Not Present language is not installed, so please install it if necessary.
Name : Language.OCR~~~hu-HU~0.0.1.0
State : NotPresent
DisplayName : ハンガリー語の光学式文字認識
Description : ハンガリー語の光学式文字認識
DownloadSize : 194407
InstallSize : 535714
Name : Language.OCR~~~it-IT~0.0.1.0
State : NotPresent
DisplayName : イタリア語の光学式文字認識
Description : イタリア語の光学式文字認識
DownloadSize : 159875
InstallSize : 485922
Name : Language.OCR~~~ja-JP~0.0.1.0
State : Installed
DisplayName : 日本語の光学式文字認識
Description : 日本語の光学式文字認識
DownloadSize : 1524589
InstallSize : 3398536
Name : Language.OCR~~~ko-KR~0.0.1.0
State : NotPresent
DisplayName : 韓国語の光学式文字認識
Description : 韓国語の光学式文字認識
DownloadSize : 3405683
InstallSize : 7890408
If you hate Python and just want to recognize it with PowerShell, click here
Multi-Processing
By processing in parallel, it is 3 times faster. You can make it even faster by increasing the number of cores!
from PIL import Image
images = [Image.open('testocr.png') for i in range(1000)]
1 core(elapsed 48s)
The CPU is not used up.
import winocr
[(await winocr.recognize_pil(img)).text for img in images]
4 cores(elapsed 16s)
I'm using 100% CPU.
Create a worker module.
%%writefile worker.py
import winocr
import asyncio
async def ensure_coroutine(awaitable):
return await awaitable
def recognize_pil_text(img):
return asyncio.run(ensure_coroutine(winocr.recognize_pil(img))).text
import worker
import concurrent.futures
with concurrent.futures.ProcessPoolExecutor() as executor:
# https://stackoverflow.com/questions/62488423
results = executor.map(worker.recognize_pil_text, images)
list(results)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file winocr-0.0.6.tar.gz
.
File metadata
- Download URL: winocr-0.0.6.tar.gz
- Upload date:
- Size: 7.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ce220d5d4fde09cd1798b3dcbea71257d3525b47b168c5b009ecc4ecf131b435 |
|
MD5 | eb63a43d41472bb18f637648fcbbe989 |
|
BLAKE2b-256 | 69f57c6375048578ff9bdffa8c93d2a2997756b8718c051090b68c56d54cf718 |
File details
Details for the file winocr-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: winocr-0.0.6-py3-none-any.whl
- Upload date:
- Size: 7.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14ceeab7ff4a87ec5913f028a89d67d5acae411414419b2f05ef0308bc2ae79a |
|
MD5 | 7ceca517e6a01d4d4b840867a8f99fa7 |
|
BLAKE2b-256 | ff4b92b15a9271ec0d2468c98c97c6a575f81928f9c53bfe9e4ffcf6acc5da23 |