Skip to main content

Windows.Media.Ocr

Project description

WinOCR

Python PyPI

Installation

pip install winocr
Full install
pip install winocr[all]

Usage

Pillow

import winocr
from PIL import Image

img = Image.open('test.jpg')
print((await winocr.recognize_pil(img, 'ja')).text)

OpenCV

import winocr
import cv2

img = cv2.imread('test.jpg')
print((await winocr.recognize_cv2(img, 'ja')).text)

Connect to local runtime on Colaboratory

Web API

Run server

pip install winocr[api]
winocr_serve

curl

curl localhost:8000?lang=ja --data-binary @test.jpg

Python

import requests

bytes = open('test.jpg', 'rb').read()
requests.post('http://localhost:8000/?lang=ja', bytes).json()['text']

You can run OCR with the Colaboratory runtime with ./ngrok http 8000

from PIL import Image
from io import BytesIO

img = Image.open('test.jpg')
# Preprocessing
buf = BytesIO()
img.save(buf, format='JPEG')
requests.post('https://15a5fabf0d78.ngrok.io/?lang=ja', buf.getvalue()).json()['text']

import cv2
import requests

img = cv2.imread('test.jpg')
# Preprocessing
requests.post('https://15a5fabf0d78.ngrok.io/?lang=ja', cv2.imencode('.jpg', img)[1].tobytes()).json()['text']

JavaScript

If you only need to recognize Chrome and English, you can also consider the Text Detection API.

// File
const file = document.querySelector('[type=file]').files[0]
await fetch('http://localhost:8000/', {method: 'POST', body: file}).then(r => r.json())

// Blob
const blob = await fetch('https://image.itmedia.co.jp/ait/articles/1706/15/news015_16.jpg').then(r=>r.blob())
await fetch('http://localhost:8000/?lang=ja', {method: 'POST', body: blob}).then(r => r.json())

It is also possible to run OCR Server on Windows Server.

Information that can be obtained

You can get angle, text, line, word, BoundingBox.

import pprint

result = await winocr.recognize_pil(img, 'ja')
pprint.pprint({
    'text_angle': result.text_angle,
    'text': result.text,
    'lines': [{
        'text': line.text,
        'words': [{
            'bounding_rect': {'x': word.bounding_rect.x, 'y': word.bounding_rect.y, 'width': word.bounding_rect.width, 'height': word.bounding_rect.height},
            'text': word.text
        } for word in line.words]
    } for line in result.lines]
})

Language installation

# Run as Administrator
Add-WindowsCapability -Online -Name "Language.OCR~~~en-US~0.0.1.0"
Add-WindowsCapability -Online -Name "Language.OCR~~~ja-JP~0.0.1.0"

# Search for installed languages
Get-WindowsCapability -Online -Name "Language.OCR*"
# State: Not Present language is not installed, so please install it if necessary.
Name         : Language.OCR~~~hu-HU~0.0.1.0
State        : NotPresent
DisplayName  : ハンガリー語の光学式文字認識
Description  : ハンガリー語の光学式文字認識
DownloadSize : 194407
InstallSize  : 535714

Name         : Language.OCR~~~it-IT~0.0.1.0
State        : NotPresent
DisplayName  : イタリア語の光学式文字認識
Description  : イタリア語の光学式文字認識
DownloadSize : 159875
InstallSize  : 485922

Name         : Language.OCR~~~ja-JP~0.0.1.0
State        : Installed
DisplayName  : 日本語の光学式文字認識
Description  : 日本語の光学式文字認識
DownloadSize : 1524589
InstallSize  : 3398536

Name         : Language.OCR~~~ko-KR~0.0.1.0
State        : NotPresent
DisplayName  : 韓国語の光学式文字認識
Description  : 韓国語の光学式文字認識
DownloadSize : 3405683
InstallSize  : 7890408

If you hate Python and just want to recognize it with PowerShell, click here

Multi-Processing

By processing in parallel, it is 3 times faster. You can make it even faster by increasing the number of cores!

from PIL import Image

images = [Image.open('testocr.png') for i in range(1000)]

1 core(elapsed 48s)

The CPU is not used up.

import winocr

[(await winocr.recognize_pil(img)).text for img in images]

4 cores(elapsed 16s)

I'm using 100% CPU.

Create a worker module.

%%writefile worker.py
import winocr
import asyncio

async def ensure_coroutine(awaitable):
    return await awaitable

def recognize_pil_text(img):
    return asyncio.run(ensure_coroutine(winocr.recognize_pil(img))).text
import worker
import concurrent.futures

with concurrent.futures.ProcessPoolExecutor() as executor:
  # https://stackoverflow.com/questions/62488423
  results = executor.map(worker.recognize_pil_text, images)
list(results)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

winocr-0.0.6.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

winocr-0.0.6-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file winocr-0.0.6.tar.gz.

File metadata

  • Download URL: winocr-0.0.6.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for winocr-0.0.6.tar.gz
Algorithm Hash digest
SHA256 ce220d5d4fde09cd1798b3dcbea71257d3525b47b168c5b009ecc4ecf131b435
MD5 eb63a43d41472bb18f637648fcbbe989
BLAKE2b-256 69f57c6375048578ff9bdffa8c93d2a2997756b8718c051090b68c56d54cf718

See more details on using hashes here.

File details

Details for the file winocr-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: winocr-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for winocr-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 14ceeab7ff4a87ec5913f028a89d67d5acae411414419b2f05ef0308bc2ae79a
MD5 7ceca517e6a01d4d4b840867a8f99fa7
BLAKE2b-256 ff4b92b15a9271ec0d2468c98c97c6a575f81928f9c53bfe9e4ffcf6acc5da23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page