Skip to main content

Wind-Plant Integrated System Design & Engineering Model

Project description

WISDEM®

Actions Status Coverage Status Documentation Status

The Wind-Plant Integrated System Design and Engineering Model (WISDEM®) is a set of models for assessing overall wind plant cost of energy (COE). The models use wind turbine and plant cost and energy production as well as financial models to estimate COE and other wind plant system attributes. WISDEM® is accessed through Python, is built using OpenMDAO, and uses several sub-models that are also implemented within OpenMDAO. These sub-models can be used independently but they are required to use the overall WISDEM® turbine design capability. Please install all of the pre-requisites prior to installing WISDEM® by following the directions below. For additional information about the NWTC effort in systems engineering that supports WISDEM® development, please visit the official NREL systems engineering for wind energy website.

Author: NREL WISDEM Team

Documentation

See local documentation in the docs-directory or access the online version at https://wisdem.readthedocs.io/en/master/

Packages

WISDEM® is a family of modules. The core modules are:

  • CommonSE includes several libraries shared among modules
  • FloatingSE works with the floating platforms
  • DrivetrainSE sizes the drivetrain and generator systems (formerly DriveSE and GeneratorSE)
  • TowerSE is a tool for tower (and monopile) design
  • RotorSE is a tool for rotor design
  • NREL CSM is the regression-based turbine mass, cost, and performance model
  • ORBIT is the process-based balance of systems cost model for offshore plants
  • LandBOSSE is the process-based balance of systems cost model for land-based plants
  • Plant_FinanceSE runs the financial analysis of a wind plant

The core modules draw upon some utility packages, which are typically compiled code with python wrappers:

  • Airfoil Preppy is a tool to handle airfoil polar data
  • CCBlade is the BEM module of WISDEM
  • pyFrame3DD brings libraries to handle various coordinate transformations
  • MoorPy is a quasi-static mooring line model
  • pyOptSparse provides some additional optimization algorithms to OpenMDAO

Installation

Installation with Anaconda is the recommended approach because of the ability to create self-contained environments suitable for testing and analysis. WISDEM® requires Anaconda 64-bit.

The installation instructions below use the environment name, "wisdem-env," but any name is acceptable. For those working behind company firewalls, you may have to change the conda authentication with conda config --set ssl_verify no. Proxy servers can also be set with conda config --set proxy_servers.http http://id:pw@address:port and conda config --set proxy_servers.https https://id:pw@address:port. To setup an environment based on a different Github branch of WISDEM, simply substitute the branch name for master in the setup line.

  1. Setup and activate the Anaconda environment from a prompt (Anaconda3 Power Shell on Windows or Terminal.app on Mac)

    conda config --add channels conda-forge
    conda env create --name wisdem-env -f https://raw.githubusercontent.com/WISDEM/WISDEM/master/environment.yml python=3.10
    conda activate wisdem-env
    
  2. In order to directly use the examples in the repository and peek at the code when necessary, we recommend all users install WISDEM in developer / editable mode using the instructions here. If you really just want to use WISDEM as a library and lean on the documentation, you can always do conda install wisdem and be done. Note the differences between Windows and Mac/Linux build systems. For Linux, we recommend using the native compilers (for example, gcc and gfortran in the default GNU suite).

    conda install -y petsc4py mpi4py                 # (Mac / Linux only)
    conda install -y gfortran                        # (Mac only without Homebrew or Macports compilers)
    conda install -y m2w64-toolchain libpython       # (Windows only)
    git clone https://github.com/WISDEM/WISDEM.git
    cd WISDEM
    python setup.py develop				 # Currently more reliable than: pip install -e
    

NOTE: To use WISDEM again after installation is complete, you will always need to activate the conda environment first with conda activate wisdem-env

Run Unit Tests

Each package has its own set of unit tests. These can be run in batch with the test_all.py script located in the top level test-directory.

Feedback

For software issues please use https://github.com/WISDEM/WISDEM/issues. For functionality and theory related questions and comments please use the NWTC forum for Systems Engineering Software Questions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wisdem-3.10.1.tar.gz (5.5 MB view details)

Uploaded Source

Built Distributions

wisdem-3.10.1-cp311-cp311-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

wisdem-3.10.1-cp311-cp311-musllinux_1_1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

wisdem-3.10.1-cp311-cp311-musllinux_1_1_i686.whl (7.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

wisdem-3.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

wisdem-3.10.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (7.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

wisdem-3.10.1-cp311-cp311-macosx_10_9_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

wisdem-3.10.1-cp310-cp310-win_amd64.whl (6.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

wisdem-3.10.1-cp310-cp310-musllinux_1_1_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

wisdem-3.10.1-cp310-cp310-musllinux_1_1_i686.whl (6.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

wisdem-3.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

wisdem-3.10.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

wisdem-3.10.1-cp310-cp310-macosx_10_9_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

wisdem-3.10.1-cp39-cp39-win_amd64.whl (5.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

wisdem-3.10.1-cp39-cp39-musllinux_1_1_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

wisdem-3.10.1-cp39-cp39-musllinux_1_1_i686.whl (6.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

wisdem-3.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

wisdem-3.10.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

wisdem-3.10.1-cp39-cp39-macosx_10_9_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file wisdem-3.10.1.tar.gz.

File metadata

  • Download URL: wisdem-3.10.1.tar.gz
  • Upload date:
  • Size: 5.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for wisdem-3.10.1.tar.gz
Algorithm Hash digest
SHA256 e845bd315bcd0a575b045b0757b37a8f443a1202484263aebc67180524fd41eb
MD5 ab54a849e356dd29a82f4078ce4bad77
BLAKE2b-256 ba84b2a112d7ed83709120a15e21aa33a78a96ba215fb6be3d44350557facb82

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: wisdem-3.10.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for wisdem-3.10.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d9fb9938cbae9893bc1d120f535bb6848ca938ee47d1cfa9035e502c7e2f5bf9
MD5 1524c4d52e843e25e2f67b74dd47feee
BLAKE2b-256 e7e0a26d4e30b71bf296f19399e42af9e439447af1b2187dc8ddb10daf61a841

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2f5b4ba7208e41eccbc9eb85c4cc8be9063400441990003e40c6e6c126b4844d
MD5 9e41845eaadb5802a27eb698dcb8b407
BLAKE2b-256 03e4d02550ae2b453846b804cb3ab4987068c8609a963fcb9418060df76dc4a5

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 344c388b330ee1db0b6856c0ae294ae1e752ed3164e0361c8900e67aeb6e74b2
MD5 e29a6ad9318e55e672b3fa1433640b09
BLAKE2b-256 1ad22c11c99290f9ea44ffbb7da1eaaf902a7755036b5b3dc85d8d64003ee4f5

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7108c201b5fa343d693b8735fb112afd9382a86316cf0df62fef68433490c51
MD5 fc6c1d475445a22f65107c861c9bbfa1
BLAKE2b-256 41b87d5e3f397de6645e9a780b37bcd51c882f1638f14f0282d5be21e6509674

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b16d74db0e294579bc7c9e7d250e602868e215da62526a8ebaf90b6575f660fc
MD5 0794e31d5fe1dbc28ee4f0225cf78005
BLAKE2b-256 ad14cadb147641ad64344269c565977d1459bc8607bcbdda539f21b7ab5d24b3

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e4468508225103880f78f1c02bcb33e5587794c90ca1babca665344c42f57f5
MD5 1cc8cac6f8affef45c540cba8c828166
BLAKE2b-256 be5726678cb9b860d1950604925cc19656c8d2fcbe4179b38f9270039b289416

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: wisdem-3.10.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 6.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for wisdem-3.10.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f5215fae4de666828e0d92b30847e43ee17646561c7393f6dd8d7ab9b37a0a9d
MD5 180f98456d3012225c828fc33779d930
BLAKE2b-256 9a10dc3cfe4c4d4a780750d7524a9c531e141e2d6126985039d4cc1998907e0a

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 20ea68743d7c477f7b9a091fec472c9209c895e144fb1a7b65a56c63ba2487bd
MD5 2c37583b73b5052ffdf1a5393bd85bff
BLAKE2b-256 42fd32e0cc22fc5a60534e92a8f87de632d1ee843b9bf330d0a73400c11b7c7a

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c07b101eb65a77fab0fa3a823e872b82ffa1e2d255fc96b3eff17fade8ba1b5b
MD5 ae0b4df9bc34c80c951f76a4672776a7
BLAKE2b-256 08f58619e38a8d74c8dde7613847870e5bab1968262153a880069e87a74313e2

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 287c4ddc3057be5bb714d43d309544d3cb159b93b04f47c611f2b160b233669c
MD5 5e2599766175540945a778b60a3ec958
BLAKE2b-256 165ceb0c34cac2e10bfbcedc6b10c72d87af899aaaaaf25217fd63095329c18b

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6e779944d4eed23e0df49f77a3ab6786d336d24edc0d9f02b9fce2cef7596e9e
MD5 0e507ec5545276c6612bf3b8d5303d9f
BLAKE2b-256 7b980a9de04d42f72fe8be3786c1e526b83d5b03a10f3469525ffc0752efaf01

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68429609c89173b9bfd33cb7747e5bb3e8f519bdb7b07274d63cdb095886daca
MD5 eed26233533cf30186758bba7039c17a
BLAKE2b-256 0277db3bc0c93dd0aaa1d152cd49545974f31082a2c6697e0ee8739e9bb1aca5

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: wisdem-3.10.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for wisdem-3.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3b93a2e75c72f197b080bc2ea3ce428d3f798d3dfc3bc1599fff300af664010b
MD5 6d20add0383d5cd26fa5658b8e6a7899
BLAKE2b-256 48827331a8489d5393d87482913142a2de11f7051b424a1c7f2044c174403fa5

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a100ea966c24e14db4e350a594f44a7dfca43e2eaac2fa2e0216242309764dd1
MD5 68e9b75d5630e83d6041eb07d7df8de0
BLAKE2b-256 06e50e4cdd7d44812fdc286ecb4bd8987c1ca4ab8451be0893794784b286bcef

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7caf81e2ac21d219d34fe0e393eb1fdc3d55dabb97a964908bd99054f531b363
MD5 a90020f5080c1b32d7b213f7c9f714e5
BLAKE2b-256 15068f5eaf10c52c99a7ea8ccfda7d38ce11477c6a286c180930ad5c012a18dc

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8cbc6d92177e45b26f48068fb07a778064c832b4359f6f04ebf0b33ec8a4e163
MD5 28a76553cb7ec22b64bd1fa48fa6dfa9
BLAKE2b-256 ee34a3d7d6213372e570b361e5a960b112b0303b9264fa9a7094eb0b5b0baa6b

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 936bf4074fd29132eb646720bda2fe994bb2b43ffa4b56c0ce556e7b40a55179
MD5 85b9321d182faba0084cca5226b3c7b7
BLAKE2b-256 c91a7eae9067367d95be941b6ebd954fcb468afc61ae72e1bb8d6e64d91e2224

See more details on using hashes here.

File details

Details for the file wisdem-3.10.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.10.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 76523261978aa3c8c1da6b3285ebb1d7a5c14590d5267e15a785b7e7cfbcfa1b
MD5 7b331056badeba0588d5533dbe2c968e
BLAKE2b-256 52762caad4065641a3bc1fa161789bae85bad2da204eb1947c50e64100c39e70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page