Skip to main content

Wind-Plant Integrated System Design & Engineering Model

Project description

WISDEM®

Actions Status Coverage Status Documentation Status

The Wind-Plant Integrated System Design and Engineering Model (WISDEM®) is a set of models for assessing overall wind plant cost of energy (COE). The models use wind turbine and plant cost and energy production as well as financial models to estimate COE and other wind plant system attributes. WISDEM® is accessed through Python, is built using OpenMDAO, and uses several sub-models that are also implemented within OpenMDAO. These sub-models can be used independently but they are required to use the overall WISDEM® turbine design capability. Please install all of the pre-requisites prior to installing WISDEM® by following the directions below. For additional information about the NWTC effort in systems engineering that supports WISDEM® development, please visit the official NREL systems engineering for wind energy website.

Author: NREL WISDEM Team

Documentation

See local documentation in the docs-directory or access the online version at https://wisdem.readthedocs.io/en/master/

Packages

WISDEM® is a family of modules. The core modules are:

  • CommonSE includes several libraries shared among modules
  • FloatingSE works with the floating platforms
  • DrivetrainSE sizes the drivetrain and generator systems (formerly DriveSE and GeneratorSE)
  • TowerSE is a tool for tower (and monopile) design
  • RotorSE is a tool for rotor design
  • NREL CSM is the regression-based turbine mass, cost, and performance model
  • ORBIT is the process-based balance of systems cost model for offshore plants
  • LandBOSSE is the process-based balance of systems cost model for land-based plants
  • Plant_FinanceSE runs the financial analysis of a wind plant

The core modules draw upon some utility packages, which are typically compiled code with python wrappers:

  • Airfoil Preppy is a tool to handle airfoil polar data
  • CCBlade is the BEM module of WISDEM
  • pyFrame3DD brings libraries to handle various coordinate transformations
  • MoorPy is a quasi-static mooring line model
  • pyOptSparse provides some additional optimization algorithms to OpenMDAO

Installation

Installation with Anaconda is the recommended approach because of the ability to create self-contained environments suitable for testing and analysis. WISDEM® requires Anaconda 64-bit. However, the conda command has begun to show its age and we now recommend the one-for-one replacement with the Miniforge3 distribution, which is much more lightweight and more easily solves for the WISDEM package dependencies.

Installation as a "library"

To use WISDEM's modules as a library for incorporation into other scripts or tools, WISDEM is available via conda install wisdem or pip install wisdem, assuming that you have already setup your python environment. Note that on Windows platforms, we suggest using conda exclusively.

Installation for direct use

These instructions are for interaction with WISDEM directly, the use of its examples, and the direct inspection of its source code.

The installation instructions below use the environment name, "wisdem-env," but any name is acceptable. For those working behind company firewalls, you may have to change the conda authentication with conda config --set ssl_verify no. Proxy servers can also be set with conda config --set proxy_servers.http http://id:pw@address:port and conda config --set proxy_servers.https https://id:pw@address:port. To setup an environment based on a different Github branch of WISDEM, simply substitute the branch name for master in the setup line.

  1. Setup and activate the Anaconda environment from a prompt (Anaconda3 Power Shell on Windows or Terminal.app on Mac)

    conda config --add channels conda-forge
    conda install git
    git clone https://github.com/WISDEM/WISDEM.git
    cd WISDEM
    conda env create --name wisdem-env -f environment.yml
    conda activate wisdem-env
    
  2. In order to directly use the examples in the repository and peek at the code when necessary, we recommend all users install WISDEM in developer / editable mode using the instructions here. If you really just want to use WISDEM as a library and lean on the documentation, you can always do conda install wisdem and be done. Note the differences between Windows and Mac/Linux build systems. For Linux, we recommend using the native compilers (for example, gcc and gfortran in the default GNU suite).

    conda install -y petsc4py mpi4py                 # (Mac / Linux only)
    conda install -y gfortran                        # (Mac only without Homebrew or Macports compilers)
    conda install -y m2w64-toolchain libpython       # (Windows only)
    pip install --no-deps -e . -v
    

NOTE: To use WISDEM again after installation is complete, you will always need to activate the conda environment first with conda activate wisdem-env

For Windows users, we recommend installing git and the m2w64 packages in separate environments as some of the libraries appear to conflict such that WISDEM cannot be successfully built from source. The git package is best installed in the base environment.

Run Unit Tests

Each package has its own set of unit tests. These can be run in batch with the test_all.py script located in the top level test-directory.

Feedback

For software issues please use https://github.com/WISDEM/WISDEM/issues. For functionality and theory related questions and comments please use the NWTC forum for Systems Engineering Software Questions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wisdem-3.17.0.tar.gz (5.2 MB view details)

Uploaded Source

Built Distributions

wisdem-3.17.0-cp312-cp312-win_amd64.whl (6.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

wisdem-3.17.0-cp312-cp312-musllinux_1_2_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

wisdem-3.17.0-cp312-cp312-musllinux_1_2_i686.whl (5.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

wisdem-3.17.0-cp312-cp312-musllinux_1_2_aarch64.whl (5.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

wisdem-3.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

wisdem-3.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

wisdem-3.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

wisdem-3.17.0-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

wisdem-3.17.0-cp312-cp312-macosx_13_0_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

wisdem-3.17.0-cp312-cp312-macosx_12_0_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

wisdem-3.17.0-cp311-cp311-win_amd64.whl (5.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

wisdem-3.17.0-cp311-cp311-musllinux_1_2_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

wisdem-3.17.0-cp311-cp311-musllinux_1_2_i686.whl (5.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

wisdem-3.17.0-cp311-cp311-musllinux_1_2_aarch64.whl (5.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

wisdem-3.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

wisdem-3.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

wisdem-3.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

wisdem-3.17.0-cp311-cp311-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

wisdem-3.17.0-cp311-cp311-macosx_13_0_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

wisdem-3.17.0-cp311-cp311-macosx_12_0_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

wisdem-3.17.0-cp310-cp310-win_amd64.whl (5.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

wisdem-3.17.0-cp310-cp310-musllinux_1_2_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

wisdem-3.17.0-cp310-cp310-musllinux_1_2_i686.whl (5.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

wisdem-3.17.0-cp310-cp310-musllinux_1_2_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

wisdem-3.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

wisdem-3.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

wisdem-3.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

wisdem-3.17.0-cp310-cp310-macosx_14_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

wisdem-3.17.0-cp310-cp310-macosx_13_0_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

wisdem-3.17.0-cp310-cp310-macosx_12_0_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

wisdem-3.17.0-cp39-cp39-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

wisdem-3.17.0-cp39-cp39-musllinux_1_2_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

wisdem-3.17.0-cp39-cp39-musllinux_1_2_i686.whl (5.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

wisdem-3.17.0-cp39-cp39-musllinux_1_2_aarch64.whl (5.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

wisdem-3.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

wisdem-3.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

wisdem-3.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

wisdem-3.17.0-cp39-cp39-macosx_14_0_arm64.whl (4.9 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

wisdem-3.17.0-cp39-cp39-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

wisdem-3.17.0-cp39-cp39-macosx_12_0_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

File details

Details for the file wisdem-3.17.0.tar.gz.

File metadata

  • Download URL: wisdem-3.17.0.tar.gz
  • Upload date:
  • Size: 5.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for wisdem-3.17.0.tar.gz
Algorithm Hash digest
SHA256 e0cb75d911eecde9a76c64b9420128a27f709a9d0aa60b4c18f7d55ffdbb71eb
MD5 cf07444d4659e4e6c98fc0e17e549134
BLAKE2b-256 34ba6c4719e1daca8fb8884f78b5ddbf7daaadcc65b546bee4a13f4ae839c1c2

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: wisdem-3.17.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for wisdem-3.17.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1e1e4059aaa5889a8c7805f54830e5396eb4fb68febc9fb9594c432ecb02fd2b
MD5 187f492f2c056c3a2aba837cc755f74b
BLAKE2b-256 75fc314ae96083e73f8b12b5b226ef1913e4f234b4cccc4e6965c1cc34c0851b

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3c726b3e748bad2f3dc20f29ad76f545b28c218de9a3ee9a1f9289bb349458f7
MD5 0439b3d38c880983d149520c96379db2
BLAKE2b-256 e6600fd4c87c975fa73a559e31701f688c8bad535afc7e911c8db2cd56eea838

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 43705aabb20b635124821b3ea58dd335a7b8f925ac33d2a6e6e63b91bb66eaf4
MD5 4e580f63f4772592a774d7a7e65dc00c
BLAKE2b-256 00cda48a0ad28b80879e881da6d76c788dc9bce93b585a0be918ecfb2f0eb857

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 267a3eaf22d9764fa91f072d4fc9b35446bad9cff96cabbece110d1dad28bc8a
MD5 fbb4dee6100caa501ac5072b30fc917e
BLAKE2b-256 72f73a8ffd70ca7c137f20704f91b9861cbb80cd0e1d33af77b39a7114b02720

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b806e455cdb442606eb712e1e4b7a3802cd481a0229b3082792e06ee4c9fba1
MD5 f1b9270312a96fbc1cbfe6d105013f26
BLAKE2b-256 ac59795f16d5b86d2321d30d3ec88ba0bc1c0e801ec00534dd340b9a6ae63128

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d5de676447f77c911181b7d83af7014ca4683e2d249829c13888262beb66702
MD5 ec7141ef8c52ac86f39d921be7589a42
BLAKE2b-256 9b579215f0984baa2ac1b8afd22c8f4220214a0f067ca7dd73c81a6d4b9434ed

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e37ee4381adca451e34cfbf91ee3ecb72aa8da9d8902bf8550cdbf4cd7e50340
MD5 795ff6af89feee8bd4d6c0c0237a25f2
BLAKE2b-256 73c32bad019d380a94a525c0845d726abe7edc6cd800c73939c98f9897dcf85b

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 21e5d8c84e629ff715cca7df0488e5e955a3c6f980c1d731aa43e68842c5d62f
MD5 d0b6699817ff32481490e63e3f3d659c
BLAKE2b-256 0f51f7bfa1027c88712c76890b21786ea604eeb79326d06e93325a0099508800

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 17c9f9c9ead6fdb84d1552692e09d5456e65a9c4970c20b4cfcbfc795138c811
MD5 ccc631d07641c29641d14b431ce5df25
BLAKE2b-256 bb7babd5445965f59947b3b0f6d1bcfa26bc73855cbdc4c7a3ecea979ab91ec1

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 6d21635487ce68aaa7f411c4a122c77382cb24b6fff306ec24252db988551e79
MD5 c56c839264803fcd6cc16653e7359006
BLAKE2b-256 982318d4d22556d6ccd30ad977b3aed11317dffaedda04aa64412ef213933888

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: wisdem-3.17.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for wisdem-3.17.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 31e550539dc0a2f85feb2bfe36587285c8cc5e14e149458ca6b84352701d50cd
MD5 d14d27db1b38bb4adc8b0403d33a9a13
BLAKE2b-256 531e1e45f0ac6694ee9131fbbf995aab93317fb1308420df3b7b04dcb32d77b0

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e2cd7a73200d95a3e43b7fcae038657cd0f848858446b3354dc1a93d473d6cc8
MD5 4129451f43a5340e3fb77d22cdbd432f
BLAKE2b-256 96bd1d3203fde1df9731f2c7e1df48b5edb370b98421eaade5ebaabc1042e3ed

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 325568e961bd936732aaddede1259ee37fec0e279a42b97d7a8d374d9f954b54
MD5 de06ca54b62f3ab04d84a29cd8b6d2e4
BLAKE2b-256 27413990a35c9b73de52941326a558614bb053d86a561cfe94ba2b24c3b5d093

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 32208cb0e145109417933de6e26bedf4ee9c474bbcf7938d94b69522224a016c
MD5 c3d53bfd16c2b47e156a159c42bb3d88
BLAKE2b-256 adbc4a7faf9d9a64b6d2d46864c4f3fff76f82ddeb642a7619e53ce7e25ca623

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 234315671917a26d6cca5b2ae1296af0c1aeff10ffcbb0c6b6b58b6bb200c39d
MD5 dfba07ce5163ecdff108ee8a45b59896
BLAKE2b-256 c06d938f162b90739b99ea6e23c8f95215b7b1678acfdbbbda18d12525bd6a23

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2fa5d80e14484e07142e0e61cae8e1279ce9b6765a1aa69262b97091a05f1630
MD5 8cdd31c83fe74936fb75ba0b92709524
BLAKE2b-256 bf5a23719dbcc4469d1717e57a13d15d796853e713d1e4a84592fd03d0cdccf9

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 46553797f309907b23c00b61f48bb02bad04f27bdb1d4f8faad838b571221653
MD5 875acb6d9ec7514ec8dd5836b5a5dd09
BLAKE2b-256 0a141c69e6a10a6d91176d3dc329bd6cb59e5eb56cee92873eb4d0ba3312dda9

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 54f5637619d26f6b82d0909b8401082939a23e8bb123defba21c8f987d9b2348
MD5 71d3d62e09dd09373e1ec30b876870ba
BLAKE2b-256 a11985b6f8f12a7a8a3fa56eaa8eb068503761cec7a70798579869f01ac1a88d

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 a9f1e2e1039bacb5c0f154a73203984e7f27d27af58b96386a90fdf5d3be6c8a
MD5 42321628400fdc7107d0e80eb9657bab
BLAKE2b-256 7cadd06110ff14264b518043c5e2644ad91f323e8b31273ca1507d2af9cf8c67

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 f4766c8f35176c71f07632f227f2bc808cba8cb47a5dd57ceb9aa596c7dbec29
MD5 c4ce35bbfbc8ebaaa09d96cfde4cb429
BLAKE2b-256 268410f6519ac500a0a0f0c9269f24ab667b2c3db20cd02168789dd53e457770

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: wisdem-3.17.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for wisdem-3.17.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 928f4fe0e5bf1ce7497059d1d87429d7f3f93b7e8dacde14bebd2bac34211ec8
MD5 53d78967a1e4211d42b3f473529a88c0
BLAKE2b-256 3b228ddcfff00d9264f267b888b3abd14cdffc55ff0ea206ebdda92a7974043b

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 49d021f1b05cbae43d9aebc924f0be92135178cdd31686cca0296cf07f935754
MD5 941115eca899b5ec80bf2825a6fba3a4
BLAKE2b-256 6862290d7914802439c01949eb5ea6895a74e3d8871a032232618bed82bf2658

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 3c3755c4296dbae806edac29594208f8bae6ccbaa40ce6bff5a22ee1691020f7
MD5 bca47b09d0b19ad57b55031f0e96cba2
BLAKE2b-256 ad20fae51e0d45260786af1df0309bf8ae9ad372fbb5dc7bbba12c590a3086c6

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ec57824dfd7948bb068d79cb77bd6b3f205cad483c647e7e7d19610ca76fdc07
MD5 e9a05ee6d9f4fc097a74838ec40318e2
BLAKE2b-256 f24e7cb4833b2b4afbc47068ccd979ec71121383e35bb1fb2e95a11b87fe47ef

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d1f8d2e02d104ad10f77952561f770134d88833896fc53508a1bb0f7ff8daa2
MD5 816635a7020a09777b3c46f6edd43053
BLAKE2b-256 775f38fa69eb5f5bbe8721c1ef14045ce574224f66cd1c81593d56ea95a44883

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 382e8458ad04b02aea53f503b344026190ea9b85f74d1dbefd00fc7fd3ac8ef9
MD5 cb78e00687c6a2963ca3c7791178ea17
BLAKE2b-256 4194c4ceeaa734e13244317146b9406d334f1c9af08388cc15e8ae47f149fded

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2d4ef2e4d0fa059d8b532528d867d491bdfbd81426629a50961661531981cd8b
MD5 0d22d5112e079db48ccd3f6dfb0a7258
BLAKE2b-256 8284808ab50cc49a163a2e6c5f3ac4c8bf8660c058b78f42a2d9be95ef1983a4

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 1c0ea11997a10fca7c3cea86782de8dab39994ba12f1794fb3eef99cff19b396
MD5 993e89d3639acab5f1a5dc496e86d4d4
BLAKE2b-256 6463c6f2e2a1ef38f1539e1287bbb1c6aa36a41d583c5bbaf5743f5477453610

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 50bdecd0e576c46a3971f61eaa979ad129d2c64238fb59d816aae5d28089edb3
MD5 186491a6d105a83a094c282addcbf413
BLAKE2b-256 e5d13eb9f03fb383ab594b3ff2d42684b333607af30e0fcd261bcd372a34316d

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 b56aeed1b6d71f0d75164aa147768fb1d99aa341c1f4ddd35eee648e0e5a6595
MD5 1fe94598383bd662757c6d289525be20
BLAKE2b-256 2f780d67ee319a56e40baf4f3989f1ae67e47de85508bdfbbcee810df42c0923

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: wisdem-3.17.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for wisdem-3.17.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aee26d9f6706522f75c83b24e85a888fba9e90b07f979812b5323245cd85f8ff
MD5 a47b0543b5146b66804b7992c3bc8be4
BLAKE2b-256 db10e88042c0831b5e3582de6978a3851eddb1ab04e0b5fc1029f331a5aa5971

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b7fd8d2085ed33d58cfd3bb8f5825d12400334ee61ca84856df604617b09528c
MD5 8211bb739ce676e3c2241f763e6e9f86
BLAKE2b-256 7053a18ec18219004ab92b84fa5714ac70f3b893adbd73ff37591f9aec817621

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 82540c0e24fe6428b9017d664be480c83c14a8c29a2bbb0bceaf0e66a905e7a2
MD5 b2d867196794f34c380254fd002d0044
BLAKE2b-256 401924dfee2454c75bb985e2c13b7b6e8e1ef3570804a14400833455395ae2ee

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3d6c7fe409cb9e48a21eb0bb67fbdea4969989ada935d4058cd2cac1750174ce
MD5 28a231c0f9624d50b897052c00f86633
BLAKE2b-256 c606a96fb61d5c2a6420f2847439600c0a8d2e372d3443a0187dbed11e1e4029

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cddbd15b006fa0b9dc39e56f0939469951232a07d71fe96e87b981b033355516
MD5 7d2a5677a8fde8946696cbabbafe9aab
BLAKE2b-256 8fda3a36b98c66560f7b028b7ea82cc598ecbc423d02a056f04b6a80ca0d5609

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 207596cc4f2b0037cebadf8e3361742f0e77e15326bbd2cf30acb2b069fbb6e2
MD5 19781431ea87be419cf2775caca9bbde
BLAKE2b-256 aefb1ef846bacb2916a401a25edaf780a672592b12964afc5640882fb2058f85

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ae706ed1d5e28e1e16bcf9ad4cdf9af2a99d69c30c21b5440cec0d82e7795d92
MD5 56ccf2e0431e08335a48bb3712141fe9
BLAKE2b-256 808faac02fb649ac8af7509855a7b3e8dec013f1a2e003e67bb4d11440349bb1

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 9be587d54db983ac4cb6a80f64cf4064ba95bfcdab84e7a4aa1ed05b77e15202
MD5 b4620618028fbc4e6dd80930c0699d5b
BLAKE2b-256 325f3e9f1e44196314c4e1ccfb6884de7da7bf322face02e1acd6b5be58a52ab

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 2f442412c74cc3e9a0be45427340a08ee2f89c48859d7a6c29210854578f33fc
MD5 4b603039805c9bcda0d072bca8840eb1
BLAKE2b-256 a69447ada7e16e39716fd7c58da67ce52ef5685ad9c114463ae7f3c67d38cb39

See more details on using hashes here.

File details

Details for the file wisdem-3.17.0-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for wisdem-3.17.0-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 b26cce8c846d8d355a26a9f4aa7e9f91c03d88c15acf53c0c8a7580d80ceba66
MD5 5347edfd9dc0bc4c81b56eb83b870ee6
BLAKE2b-256 a33dac7bfcdca2fab3e8d29d72302b1e014c80e0e2e68d9738ee8d24595c6d5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page