Skip to main content

AI Assistant for Python Data Analytics

Project description

WiseData

AI Assistant for Python Data Analytics

Capabilities Limitations
Use SQL to transform Pandas dataframes May occasionally generate incorrect results
Use English to transform Pandas dataframes May generate incorrect results due to ambiguity
Use English to visualize Pandas dataframes May generate incorrect results due to ambiguity

Sign Up Here

🔍 Demo

Try out WiseData in your browser:

Open in Colab

🔧 Quick install

Install WiseData client first:

pip install wisedata

Configure with your account's API key. Either set it as WISEDATA_API_KEY environment variable before using the library:

export WISEDATA_API_KEY=sk-...

Or set api_key to its value:

from wisedata import WiseData

wd = WiseData(api_key="you_api_key_here")

Use SQL to transform Pandas dataframes

You need to install pandas and numpy packages as pre-requisites for SQL query.

pip install pandas numpy

To transform, simply call sql function. You can use SQLite style SQL query to transform Pandas dataframes.

from wisedata import WiseData
import pandas as pd

countries = pd.DataFrame({
    "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
    "gdp": [19294482071552, 2891615567872, 2411255037952, 3435817336832, 1745433788416, 1181205135360, 1607402389504, 1490967855104, 4380756541440, 14631844184064],
    "happiness_index": [6.94, 7.16, 6.66, 7.07, 6.38, 6.4, 7.23, 7.22, 5.87, 5.12]
})

wd = WiseData(api_key="you_api_key_here")
df = wd.sql("SELECT COUNT(country) FROM countries", {
  "countries": countries
})
print(df)

The above code will return following dataframe:

        count
0          10

You can also do joins of multiple dataframes:

from wisedata import WiseData
import pandas as pd

countries = pd.DataFrame({
    "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
    "gdp": [19294482071552, 2891615567872, 2411255037952, 3435817336832, 1745433788416, 1181205135360, 1607402389504, 1490967855104, 4380756541440, 14631844184064],
    "happiness_index": [6.94, 7.16, 6.66, 7.07, 6.38, 6.4, 7.23, 7.22, 5.87, 5.12]
})

country_populations = pd.DataFrame({
    "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
    "population": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
})

wd = WiseData(api_key="you_api_key_here")
df = wd.sql("SELECT * FROM countries LEFT JOIN country_populations ON countries.country = country_populations.country", {
  "countries": countries,
  "country_populations": country_populations
})
print(df)

The above code will return following dataframe:

          country             gdp  happiness_index  population
0   United States  19294482071552             6.94           1
1  United Kingdom   2891615567872             7.16           2
2          France   2411255037952             6.66           3
3         Germany   3435817336832             7.07           4
4           Italy   1745433788416             6.38           5
5           Spain   1181205135360             6.40           6
6          Canada   1607402389504             7.23           7
7       Australia   1490967855104             7.22           8
8           Japan   4380756541440             5.87           9
9           China  14631844184064             5.12          10

Limitations of using SQL to transform Pandas dataframes

  • May occasionally generate incorrect results
  • Ordering of rows is not strict unless ORDER BY clause is specified
  • No support for Window functions: https://www.sqlite.org/windowfunctions.html
  • If SQL query contains WHERE clause with LIKE operator, incorrect result might be generated

Use English to transform Pandas dataframes

Using English to transform is nice for simple transformations. Sometimes transforming data using SQL can be complex whereas easy for English.

To transform, simply call transform function.

from wisedata import WiseData
import pandas as pd

countries = pd.DataFrame({
    "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
    "gdp": [19294482071552, 2891615567872, 2411255037952, 3435817336832, 1745433788416, 1181205135360, 1607402389504, 1490967855104, 4380756541440, 14631844184064],
    "happiness_index": [6.94, 7.16, 6.66, 7.07, 6.38, 6.4, 7.23, 7.22, 5.87, 5.12]
})

wd = WiseData(api_key="you_api_key_here")
df = wd.transform("give me gdp data pivotted by country", {
  "countries": countries
})
print(df)

The above code will return the following dataframe:

gdp             1181205135360   1490967855104   1607402389504   1745433788416   2411255037952   2891615567872   3435817336832   4380756541440   14631844184064  19294482071552
country                                                                                                                                                                       
Australia                  NaN            7.22             NaN             NaN             NaN             NaN             NaN             NaN             NaN             NaN
Canada                     NaN             NaN            7.23             NaN             NaN             NaN             NaN             NaN             NaN             NaN
China                      NaN             NaN             NaN             NaN             NaN             NaN             NaN             NaN            5.12             NaN
France                     NaN             NaN             NaN             NaN            6.66             NaN             NaN             NaN             NaN             NaN
Germany                    NaN             NaN             NaN             NaN             NaN             NaN            7.07             NaN             NaN             NaN
Italy                      NaN             NaN             NaN            6.38             NaN             NaN             NaN             NaN             NaN             NaN
Japan                      NaN             NaN             NaN             NaN             NaN             NaN             NaN            5.87             NaN             NaN
Spain                      6.4             NaN             NaN             NaN             NaN             NaN             NaN             NaN             NaN             NaN
United Kingdom             NaN             NaN             NaN             NaN             NaN            7.16             NaN             NaN             NaN             NaN
United States              NaN             NaN             NaN             NaN             NaN             NaN             NaN             NaN             NaN            6.94

Limitations of using English to transform Pandas dataframes

  • May generate incorrect results due to ambiguity

Use English to visualize Pandas dataframes

You can write English to describe how you want to visualize your dataframe.

You need to install matplotlib and seaborn packages as pre-requisites for SQL query.

pip install matplotlib seaborn

To visualize, simply call viz function.

from wisedata import WiseData
import seaborn as sns

wd = WiseData(api_key="you_api_key_here")
tips = sns.load_dataset("tips")
wd.viz("Show me relationship between total bill and tip. Each day should have different colour. Title is: Total Bill vs Tip", { "tips": tips })

Printing out translated code

You can ask WiseData to print translated code to console using code=True flag.

import logging
import sys

root = logging.getLogger()
root.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
root.addHandler(handler)

...

df = wd.sql("SELECT COUNT(country) FROM countries", {
  "countries": countries
}, code=True)

Error Handling

Errors could happen if we cannot translate the SQL query. Consider the following example:

from wisedata import WiseData
import pandas as pd

countries = pd.DataFrame({
    "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
    "gdp": [19294482071552, 2891615567872, 2411255037952, 3435817336832, 1745433788416, 1181205135360, 1607402389504, 1490967855104, 4380756541440, 14631844184064],
    "happiness_index": [6.94, 7.16, 6.66, 7.07, 6.38, 6.4, 7.23, 7.22, 5.87, 5.12]
})

wd = WiseData(api_key="you_api_key_here")
wd.sql("SELECT bad_column FROM bad_table", {
  "countries": countries
})

The above code will give following error message:

ERROR    root:__init__.py:47 We couldn't translate your query. Here is python code we attempted to generate: 
return_df = bad_table['bad_column']

You can modify the SQL query so that it works based on the code we attempted to generate. You can also take the translated code and use it after modifying it to work.

📜 License

WiseData is licensed under the Apache 2.0 License. See the LICENSE file for more details.

🤝 Acknowledgements

  • This project is leverages pandas library by independent contributors, but it's in no way affiliated with the pandas project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wisedata-1.0.13.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

wisedata-1.0.13-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file wisedata-1.0.13.tar.gz.

File metadata

  • Download URL: wisedata-1.0.13.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for wisedata-1.0.13.tar.gz
Algorithm Hash digest
SHA256 d73683d6de09ee09d780878927ef52d34077078498122e87e425aaba668ac936
MD5 3bae16b9b7f17653d53c15bfbfefccf6
BLAKE2b-256 804dccf68b4de5e7ae998d9f5733960fe69bcd8e6b27b60bddd131a58a9511f8

See more details on using hashes here.

File details

Details for the file wisedata-1.0.13-py3-none-any.whl.

File metadata

  • Download URL: wisedata-1.0.13-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for wisedata-1.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 da394c2ca3cbaf10b0018eacd849ff9a18ff55b408e7e2a4f684e56d2415a48c
MD5 a6f940fba28a5c52f260cf424dd4a77e
BLAKE2b-256 c1ca510d595a7aa812a876a4655f186a4405716a4fe8585cd958c1da6d7491c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page