A library desgined for Offline Preference-Based RL algorithms.
Project description
🚧 This repo is subject to major API changes 🚧
WiseRL provides unofficial and banchmarked PyTorch implementations for Offline Preference-Based RL algorithms, including:
- Oracle-IQL & Oracle AWAC
- Supervised Finetuning (SFT)
- BT Model + IQL/AWAC (BT-IQL/AWAC)
- Contrastive Prefereing Learning (CPL)
- Inverse Preference Learning + IQL/AWAC (IPL-IQL/AWAC)
Installation
- clone this repo and install the dependencies
git clone git@github.com:typoverflow/WiseRL cd WiseRL && pip install -e .
- install environment or dataset dependencies
- for D4RL experiments:
git clone https://github.com/Farama-Foundation/d4rl.git cd d4rl pip install -e .
- for metaworld experiments:
git clone git@github.com:Farama-Foundation/Metaworld cd Metaworld && git checkout 04be337a pip install -e .
- for D4RL experiments:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
wiserl-0.0.2.tar.gz
(41.4 kB
view details)
File details
Details for the file wiserl-0.0.2.tar.gz
.
File metadata
- Download URL: wiserl-0.0.2.tar.gz
- Upload date:
- Size: 41.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 35f79e7c45af4da3e10bc38f11792eba64da292b069ea5d8b4d4a3201e5f679e |
|
MD5 | e1fbbefe35f8374f9a91222fcc460ed0 |
|
BLAKE2b-256 | 39403c0455b015722bf90f01057495562be09c76cd4c2eb8d04b1d69503f1ea5 |