Skip to main content

Witchery is a powerful Python library that offers various functionalities for code analysis and modification.

Project description

Witchery

A Python Package for Code Analysis and Modification

Witchery is a powerful Python library that offers various functionalities for code analysis and modification. It provides tools to traverse Abstract Syntax Trees (AST) of Python code and perform tasks such as finding defined variables, removing specific variables, identifying local imports, adding function calls, and much more.

Whether you need to analyze code for missing variables, remove certain variables from your codebase, or perform code transformations, Witchery has you covered. It is a versatile utility for developers and programmers seeking to enhance their code analysis and modification capabilities.

With Witchery, you can easily parse Python code, identify used and defined variables, handle imports, and generate code for missing variables, among other useful features. This package is designed to simplify code manipulation tasks and assist in creating cleaner and more efficient Python codebases.

Features:

  • Find defined variables within Python code
  • Remove specific variables from code
  • Identify local imports in code
  • Remove imports of specific modules
  • Add function calls to existing code
  • Find missing variables in code
  • Generate ✨ magic ✨ code to define missing variables
  • and more!

PyPI - Version PyPI - Python Version
Code style: black License: MIT
su6 checks coverage.svg


Table of Contents

Installation

You can install witchery using pip:

pip install witchery

Usage

The witchery library provides several useful methods to work with Python code. Here are the main functions and their purposes:

  1. find_defined_variables(code_str: str) -> set[str]: Parses the given Python code and finds all variables that are defined within. It returns a set of variable names that are defined in the provided Python code.

  2. remove_specific_variables(code: str, to_remove: typing.Iterable[str] = ("db", "database")) -> str: Removes specific variables from the given code. You can specify a list of variable names to be removed, and the function will return the code after removing the specified variables.

  3. has_local_imports(code: str) -> bool: Checks if the given code has local imports. It returns True if local imports are found, and False otherwise.

  4. remove_import(code: str, module_name: typing.Optional[str]) -> str: Removes the import of a specific module from the given code. You can specify the name of the module to remove, and the function will return the code after removing the import of the specified module.

  5. remove_local_imports(code: str) -> str: Removes all local imports from the given code. It returns the code after removing all local imports.

  6. find_function_to_call(code: str, function_call_hint: str) -> typing.Optional[str]: Finds the function to call in the given code based on the function call hint. It returns the name of the function to call if found, or None otherwise.

  7. extract_function_details(function_call: str, default_args: typing.Iterable[str] = DEFAULT_ARGS) -> tuple[str | None, list[str]]: Extracts the function name and arguments from the function call string. It returns a tuple containing the function name and a list of arguments.

  8. add_function_call(code: str, function_call: str, args: typing.Iterable[str] = DEFAULT_ARGS) -> str: Adds a function call to the given code. You can specify the function call string and the arguments for the function call.

  9. find_variables(code_str: str) -> tuple[set[str], set[str]]: Finds all used and defined variables in the given code string. It returns a tuple containing sets of used and defined variables.

  10. find_missing_variables(code: str) -> set[str]: Finds and returns all missing variables in the given code. It returns a set of names of missing variables.

  11. generate_magic_code(missing_vars: set[str]) -> str: Generates code to define missing variables with a do-nothing object. After finding missing variables, it fills them in with an object that does nothing except return itself or an empty string.

Examples

import witchery

# Example 1: Find defined variables in code
code = """
x = 5
y = 10
z = x + y
"""
defined_vars = witchery.find_defined_variables(code)
print(defined_vars)
# Output: {'x', 'y', 'z'}

# Example 2: Remove specific variables from code
code = """
x = 5
y = 10
db = Database()
"""
new_code = witchery.remove_specific_variables(code, to_remove=["x", "db"])
print(new_code)
# Output: "y = 10"

# Example 3: Check if code has local imports
code = "from my_module import my_function"
has_local_imports = witchery.has_local_imports(code)
print(has_local_imports)
# Output: False

code = "from .my_module import my_function"
has_local_imports = witchery.has_local_imports(code)
print(has_local_imports)
# Output: True

# Example 4: Remove import of a specific module from code
code = """
import module_name
from module_name import something
x = module_name.function()
"""
new_code = witchery.remove_import(code, module_name="module_name")
print(new_code)
# Output: "x = module_name.function()"

# do note that this only removes the import, NOT any function calls to it!

# Example 5: Remove all local imports from code
code = """
from .local_module import something
from another_module import func

def my_function():
    return func(), something()
"""
new_code = witchery.remove_local_imports(code)
print(new_code)
# Output:
# from another_module import func
# 
# def my_function():
#     return func(), something()

# do note that this only removes the imports, NOT any function calls to it!

# Example 6: Find the function to call based on the function call hint
code = """
def my_function():
    return 42

x = my_function()
"""
function_to_call = witchery.find_function_to_call(code, "my_function()")  # can be with or without parentheses
print(function_to_call)
# Output: "my_function"

# will be None if the function does not exist in the specified code.

# Example 7: Extract function name and arguments from function call string
function_call = "my_function(x, y, 'z')"
function_name, args = witchery.extract_function_details(function_call)
print(function_name)
# Output: "my_function"
print(args)
# Output: ['x', 'y', "'z'"]

# Example 8: Add a function call to code
code = """
def add(a, b):
    return a + b

result = add(3, 5)
"""
new_code = witchery.add_function_call(code, function_call="add(x, y)")
print(new_code)
# Output: 
# def add(a, b):
#     return a + b
# add(x, y)
# result = add(3, 5)

# The call will be placed right below the function definition.

# Example 9: Find used and defined variables in code
code = """
x = 5
y = x + z
result = x * y
"""
used_vars, defined_vars = witchery.find_variables(code, with_builtins=False)
print(used_vars)
# Output: {'x', 'y', 'z'}
print(defined_vars)
# Output: {'x', 'y', 'result'}  # will be a lot longer if with_builtins = True

# Example 10: Find missing variables in code
code = """
x = 5
result = x * y
"""
missing_vars = witchery.find_missing_variables(code)
print(missing_vars)
# Output: {'y'}

# Example 11: Generate magic code to define missing variables
missing_vars = {'y', 'z'}
magic_code = witchery.generate_magic_code(missing_vars)
print(magic_code)
# Output: """
# class Empty:
#     ...
#
# empty = Empty()
# y = empty; z = empty;
# """

License

witchery is distributed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

witchery-0.2.0.tar.gz (51.3 kB view details)

Uploaded Source

Built Distribution

witchery-0.2.0-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file witchery-0.2.0.tar.gz.

File metadata

  • Download URL: witchery-0.2.0.tar.gz
  • Upload date:
  • Size: 51.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.24.1

File hashes

Hashes for witchery-0.2.0.tar.gz
Algorithm Hash digest
SHA256 93583c6c3a72d93eb352ce9d6ab42a36aae880507477ddc5dc931a5c2af7a328
MD5 0402d9753fb10931278b644448105583
BLAKE2b-256 dded273913151edf2de4b7ffe2febaaf15d15c1836592bac2de41eee9709b36c

See more details on using hashes here.

File details

Details for the file witchery-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: witchery-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.24.1

File hashes

Hashes for witchery-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 40fcc60b22005b063ac7f86e4441816a91c45cc1ed01f31187c8677d92680f8f
MD5 e6283ae99d08c9bbd9eb7ce746acb765
BLAKE2b-256 dcf0a84af7b915fe91dc1081b788550bfb5bb00d8b73fe9e4298ac2ef7989308

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page