Handy Tools for Developers
Project description
Package wizzi utils:
Installation:
pip install wizzi_utils
Usage
import wizzi_utils as wu # imports all that is available
print(wu.version())
- The above import will give you access to all functions and tests in wizzi_utils.
- Other than misc_tools, it is the user's responsibility to install the requirements to sub packages such as torch, tensorflow and so on.
- For convenience, the wizzi_utils imports all it can from the sub packages, therefore only the one import above is enough.
- Every function is covered by a test(usually the 'func_name'_test()). Use this to see how the function works and also to copy paste the signature.
misc_tools & misc_tools_test
'pip install wizzi_utils' made sure you'll have everything needed installed so they should be fully working,
so there is no namespace for misc_tools module(direct access from wu)
import wizzi_utils as wu
def main():
# all functions in misc_tools & misc_tools_test are imported to wizzi_utils
print(wu.to_str(var=2, title='my_int')) # notice only wu namespace
# direct access to the misc_tools module
print(wu.misc_tools.to_str(var=2, title='my_int')) # not needed but possible
wu.test.test_all() # runs all tests in misc_tools_test.py
wu.test.to_str_test() # runs only to_str_test
return
if __name__ == '__main__':
wu.main_wrapper(
main_function=main,
seed=42,
ipv4=True,
cuda_off=False,
torch_v=True,
tf_v=True,
cv2_v=True,
with_profiler=False
)
All other packages
Other packages, e.g. torch_tools, will work only if you have all the dependencies written in the init file of the module or by calling wu.wizzi_utils_requirements()
import wizzi_utils as wu
def main():
wu.wizzi_utils_requirements() # will print all packages names and their requirements
# access to a function in the torch module (must install torch and torchvision)
print(wu.tt.to_str(var=3, title='my_int')) # notice wu and tt namespaces. tt for torch tools
# access to a function in the matplotlib module(must install matplotlib and mpl_toolkits)
print(wu.pyplt.get_rgb_color(color_str='r'))
# access to a module test
wu.pyplt.test.test_all() # all tests in pyplt module
wu.pyplt.test.plot_3d_iterative_dashboard_test() # specific test in pyplot module
return
if __name__ == '__main__':
wu.main_wrapper(
main_function=main,
seed=42,
ipv4=True,
cuda_off=False,
torch_v=True,
tf_v=True,
cv2_v=True,
with_profiler=False
)
Examples:
import wizzi_utils as wu
def main():
# wu.wizzi_utils_requirements()
return
if __name__ == '__main__':
wu.main_wrapper(
main_function=main,
seed=42,
ipv4=True,
cuda_off=False,
torch_v=True,
tf_v=True,
cv2_v=True,
with_profiler=False
)
C:\Users\GiladEiniKbyLake\.conda\envs\wu\python.exe D:/workspace/2021wizzi_utils/temp/wu_test.py
--------------------------------------------------------------------------------
main_wrapper:
* Run started at 11-08-2021 15:02:30
* Python Version 3.6.8 |Anaconda, Inc.| (default, Feb 21 2019, 18:30:04) [MSC v.1916 64 bit (AMD64)]
* Operating System uname_result(system='Windows', node='Wizzi-Dorms', release='10', version='10.0.19041', machine='AMD64', processor='Intel64 Family 6 Model 158 Stepping 9, GenuineIntel')
* Interpreter: C:\Users\GiladEiniKbyLake\.conda\envs\wu\python.exe
* wizzi_utils Version 6.7.14
* Working Dir: D:\workspace\2021wizzi_utils\temp
* Computer Mac: 'deleted'
* CPU Info: AMD64, Intel64 Family 6 Model 158 Stepping 9, GenuineIntel, Physical cores 4, Total cores 8, Frequency 3601.00Mhz, CPU Usage 53.8%
* Physical Memory: C: Total 232.33 GB, Used 209.79 GB(90.30%), Free 22.55 GB, D: Total 931.39 GB, Used 530.3 GB(56.90%), Free 401.08 GB, E: PermissionError: [WinError 21] The device is not ready: 'E'
* RAM: Total 15.94 GB, Used 5.29 GB(33.2%), Available 10.65 GB
* Computer ipv4: 'deleted'
* CUDA Version: v10.2 (cuDNN Version 7.6.5)
* PyTorch Version 1.9.0+cpu - GPU detected ? False
* OpenCv Version 4.5.3 - GPU detected ? False # if built from source - this could be true
* TFLite Version 2.5.0
* Seed was initialized to 42
Function <function main at 0x000002184BAC1EA0> started:
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Total run time 0:00:00
Process finished with exit code 0
import wizzi_utils as wu
def main():
# mt package - main package
wu.test.to_str_test()
wu.test.add_color_test()
wu.test.get_time_stamp_test()
wu.test.get_time_stamp_test()
wu.test.save_load_npz_test()
wu.test.shuffle_np_arrays_test()
wu.test.save_load_pkl_test()
wu.test.nCk_test()
wu.test.get_base_file_and_function_name_test()
wu.test.file_or_folder_size_test()
wu.test.classFPS_test()
# pyplt package
wu.pyplt.test.move_figure_by_str_test()
wu.pyplt.test.plot_2d_many_figures_iterative_test()
wu.pyplt.test.plot_3d_iterative_dashboard_test()
wu.pyplt.test.compare_images_sets_test()
wu.pyplt.test.compare_images_multi_sets_squeezed_test() # if you have torch, torchvision
# cvt package
wu.cvt.test.move_cv_img_by_str_test()
wu.cvt.test.unpack_list_imgs_to_big_image_test()
# st package
wu.st.test.download_file_test()
# tt package
wu.tt.test.count_keys_test()
wu.tt.test.to_str_test()
wu.tt.test.save_load_tensor_test()
wu.tt.test.OptimizerHandler_test()
wu.tt.test.shuffle_tensors_test()
wu.tt.test.count_keys_test()
wu.tt.test.get_torch_version_test()
wu.tt.test.save_load_model_test()
wu.tt.test.model_summary_test()
# models package
wu.models.test.test_all() # will download some models and do short tests
# got package - first do the instructions
wu.got.test.upload_delete_image_test()
return
if __name__ == '__main__':
wu.main_wrapper(
main_function=main,
seed=42,
ipv4=True,
cuda_off=False,
torch_v=True,
tf_v=True,
cv2_v=True,
with_profiler=False
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
wizzi_utils-7.0.20.tar.gz
(155.4 kB
view details)
File details
Details for the file wizzi_utils-7.0.20.tar.gz
.
File metadata
- Download URL: wizzi_utils-7.0.20.tar.gz
- Upload date:
- Size: 155.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e91cd5a00abf2d928505126fc6ba96f565b71a86a718c2ac413f442e243cbc56 |
|
MD5 | 94314de9c449602a32ea7eff600739b0 |
|
BLAKE2b-256 | 2f030d822aaae821abb0798d49be2796fa6a2524f33f4610423cdf3a07de55ed |