Skip to main content

Handy Tools for Developers

Project description

Package wizzi utils:

Installation:

pip install wizzi_utils 

Usage

import wizzi_utils as wu # imports all that is available
print(wu.version()) 
  • The above import will give you access to all functions and tests in wizzi_utils.
  • Other than misc_tools, it is the user's responsibility to install the requirements to sub packages such as torch, tensorflow and so on.
  • For convenience, the wizzi_utils imports all it can from the sub packages, therefore only the one import above is enough.
  • Every function is covered by a test(usually the 'func_name'_test()). Use this to see how the function works and also to copy paste the signature.

misc_tools & misc_tools_test

'pip install wizzi_utils' made sure you'll have everything needed installed so they should be fully working, so there is no namespace for misc_tools module(direct access from wu)

import wizzi_utils as wu


def main():
    # all functions in misc_tools & misc_tools_test are imported to wizzi_utils
    print(wu.to_str(var=2, title='my_int'))  # notice only wu namespace

    # direct access to the misc_tools module
    print(wu.misc_tools.to_str(var=2, title='my_int'))  # not needed but possible

    wu.test.test_all()  # runs all tests in misc_tools_test.py
    wu.test.to_str_test()  # runs only to_str_test
    return


if __name__ == '__main__':
    wu.main_wrapper(
        main_function=main,
        seed=42,
        ipv4=True,
        cuda_off=False,
        torch_v=True,
        tf_v=True,
        cv2_v=True,
        with_profiler=False
    )

All other packages

Other packages, e.g. torch_tools, will work only if you have all the dependencies written in the init file of the module or by calling wu.wizzi_utils_requirements()

import wizzi_utils as wu


def main():
    wu.wizzi_utils_requirements()  # will print all packages names and their requirements

    # access to a function in the torch module (must install torch and torchvision)
    print(wu.tt.to_str(var=3, title='my_int'))  # notice wu and tt namespaces. tt for torch tools

    # access to a function in the matplotlib module(must install matplotlib and mpl_toolkits)
    print(wu.pyplt.get_rgb_color(color_str='r'))

    # access to a module test
    wu.pyplt.test.test_all()  # all tests in pyplt module
    wu.pyplt.test.plot_3d_iterative_dashboard_test()  # specific test in pyplot module
    return


if __name__ == '__main__':
    wu.main_wrapper(
        main_function=main,
        seed=42,
        ipv4=True,
        cuda_off=False,
        torch_v=True,
        tf_v=True,
        cv2_v=True,
        with_profiler=False
    )

Examples:

import wizzi_utils as wu


def main():
    # wu.wizzi_utils_requirements()
    return


if __name__ == '__main__':
    wu.main_wrapper(
        main_function=main,
        seed=42,
        ipv4=True,
        cuda_off=False,
        torch_v=True,
        tf_v=True,
        cv2_v=True,
        with_profiler=False
    )
C:\Users\GiladEiniKbyLake\.conda\envs\wu\python.exe D:/workspace/2021wizzi_utils/temp/wu_test.py
--------------------------------------------------------------------------------
main_wrapper:
* Run started at 11-08-2021 15:02:30
* Python Version 3.6.8 |Anaconda, Inc.| (default, Feb 21 2019, 18:30:04) [MSC v.1916 64 bit (AMD64)]
* Operating System uname_result(system='Windows', node='Wizzi-Dorms', release='10', version='10.0.19041', machine='AMD64', processor='Intel64 Family 6 Model 158 Stepping 9, GenuineIntel')
* Interpreter: C:\Users\GiladEiniKbyLake\.conda\envs\wu\python.exe
* wizzi_utils Version 6.7.14
* Working Dir: D:\workspace\2021wizzi_utils\temp
* Computer Mac: 'deleted'
* CPU Info: AMD64, Intel64 Family 6 Model 158 Stepping 9, GenuineIntel, Physical cores 4, Total cores 8, Frequency 3601.00Mhz, CPU Usage 53.8%
* Physical Memory: C: Total 232.33 GB, Used 209.79 GB(90.30%), Free 22.55 GB, D: Total 931.39 GB, Used 530.3 GB(56.90%), Free 401.08 GB, E: PermissionError: [WinError 21] The device is not ready: 'E'
* RAM: Total 15.94 GB, Used 5.29 GB(33.2%), Available 10.65 GB 
* Computer ipv4: 'deleted'
* CUDA Version: v10.2 (cuDNN Version 7.6.5)
* PyTorch Version 1.9.0+cpu - GPU detected ? False
* OpenCv Version 4.5.3 - GPU detected ? False  # if built from source - this could be true
* TFLite Version 2.5.0
* Seed was initialized to 42
Function <function main at 0x000002184BAC1EA0> started:
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Total run time 0:00:00

Process finished with exit code 0
import wizzi_utils as wu


def main():
    # mt package - main package
    wu.test.to_str_test()
    wu.test.add_color_test()
    wu.test.get_time_stamp_test()
    wu.test.get_time_stamp_test()
    wu.test.save_load_npz_test()
    wu.test.shuffle_np_arrays_test()
    wu.test.save_load_pkl_test()
    wu.test.nCk_test()
    wu.test.get_base_file_and_function_name_test()
    wu.test.file_or_folder_size_test()
    wu.test.classFPS_test()
    # pyplt package
    wu.pyplt.test.move_figure_by_str_test()
    wu.pyplt.test.plot_2d_many_figures_iterative_test()
    wu.pyplt.test.plot_3d_iterative_dashboard_test()
    wu.pyplt.test.compare_images_sets_test()
    wu.pyplt.test.compare_images_multi_sets_squeezed_test()  # if you have torch, torchvision
    # cvt package
    wu.cvt.test.move_cv_img_by_str_test()
    wu.cvt.test.unpack_list_imgs_to_big_image_test()
    # st package
    wu.st.test.download_file_test()    
    # tt package
    wu.tt.test.count_keys_test()
    wu.tt.test.to_str_test()
    wu.tt.test.save_load_tensor_test()
    wu.tt.test.OptimizerHandler_test()
    wu.tt.test.shuffle_tensors_test()
    wu.tt.test.count_keys_test()
    wu.tt.test.get_torch_version_test()
    wu.tt.test.save_load_model_test()
    wu.tt.test.model_summary_test()
    # models package
    wu.models.test.test_all()  # will download some models and do short tests
    # got package - first do the instructions
    wu.got.test.upload_delete_image_test()
    return


if __name__ == '__main__':
    wu.main_wrapper(
        main_function=main,
        seed=42,
        ipv4=True,
        cuda_off=False,
        torch_v=True,
        tf_v=True,
        cv2_v=True,
        with_profiler=False
    )

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wizzi_utils-7.0.20.tar.gz (155.4 kB view details)

Uploaded Source

File details

Details for the file wizzi_utils-7.0.20.tar.gz.

File metadata

  • Download URL: wizzi_utils-7.0.20.tar.gz
  • Upload date:
  • Size: 155.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.6.8

File hashes

Hashes for wizzi_utils-7.0.20.tar.gz
Algorithm Hash digest
SHA256 e91cd5a00abf2d928505126fc6ba96f565b71a86a718c2ac413f442e243cbc56
MD5 94314de9c449602a32ea7eff600739b0
BLAKE2b-256 2f030d822aaae821abb0798d49be2796fa6a2524f33f4610423cdf3a07de55ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page