A package of tools for building deep-learning classification programs.
Project description
wk-classify
A package of tools for building deep-learning classification programs. Easy to use, light and powerful.
Install
pip3 install wk-classify
Usage
Quick start
from wcf import train, TrainValConfigBase
class Config(TrainValConfigBase):
TRAIN_DIR = 'path for train set'
VAL_DIR = 'path for val set'
cfg=Config()
train(cfg)
A real example
from wcf import train, TrainValConfigBase, val,t,EasyTransform,models_names
class Config(TrainValConfigBase):
MODEL_TYPE = models_names.shufflenet_v2_x0_5
TAG = '[%s]'%(MODEL_TYPE)
GEN_CLASSES_FILE = True
USE_tqdm_TRAIN = True
INPUT_SIZE = (252,196) #(w,h)
BATCH_SIZE = 64
MAX_EPOCHS = 200
BALANCE_CLASSES = True
VAL_INTERVAL = 1
WEIGHTS_SAVE_INTERVAL = 1
WEIGHTS_INIT = 'weights/training/model_best.pkl'
TRAIN_DIR = '/home/ars/sda5/data/projects/烟盒/data/现场采集好坏烟照片/相机1-train'
VAL_DIR = '/home/ars/sda5/data/projects/烟盒/data/现场采集好坏烟照片/相机1-val'
val_transform = EasyTransform([
t.Resize(INPUT_SIZE[::-1]),
t.SaveToDir('data/test'),
t.ToTensor(),
])
train_transform = EasyTransform([
t.ColorJitter(brightness=0.2, contrast=0, saturation=0, hue=0),
# t.RandomHorizontalFlip(),
# t.RandomVerticalFlip(),
# t.RandomRotate(360),
t.RandomTranslate(30),
t.RandomBlur(p=0.3, radius=1),
t.RandomSPNoise(p=0.3),
*val_transform,
])
# def get_model(self, num_classes=None):
# model=YourModel(...)
# return model
if __name__ == '__main__':
cfg = Config()
train(cfg)
# res=val(cfg)
# print(res)
all options
see the TrainValConfigBase
class for all options
how to predict?
see demo_predict.py
more
see demo_train.py
and demo_predict.py
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
wk-classify-0.0.3.5.tar.gz
(24.3 kB
view details)
Built Distribution
File details
Details for the file wk-classify-0.0.3.5.tar.gz
.
File metadata
- Download URL: wk-classify-0.0.3.5.tar.gz
- Upload date:
- Size: 24.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5d0e92fadda9b9f71db35bdd1aceaddd4348c2ad2f69d29b61bd7521ae66270e |
|
MD5 | a57d878e0f667d818a9cf24ad5e001e8 |
|
BLAKE2b-256 | 57b108565928bb24c6991b6e154271b6544aa8190669f44817a362993adb0d8d |
File details
Details for the file wk_classify-0.0.3.5-py3-none-any.whl
.
File metadata
- Download URL: wk_classify-0.0.3.5-py3-none-any.whl
- Upload date:
- Size: 31.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4294fcd0b53e6dd45fc1fdb51d0b3fb438dc4141d1614accd6357eabb0f0dfb1 |
|
MD5 | 29eed51cf47a0b50c5eed62175373c78 |
|
BLAKE2b-256 | 8e1fcd1792e7d505d3d6607383ac6082e6981776957c2bba76512b7defc6df7a |