Skip to main content

Water Network Tool for Resilience

Project description

<h1> <img src=”https://raw.githubusercontent.com/usepa/wntr/main/documentation/_static/logo.jpg” width=”375”> </h1><br>

[![build](https://github.com/USEPA/WNTR/workflows/build/badge.svg)](https://github.com/USEPA/WNTR/actions/workflows/build_tests.yml) [![Coverage Status](https://coveralls.io/repos/github/USEPA/WNTR/badge.svg?branch=main)](https://coveralls.io/github/USEPA/WNTR?branch=main) [![Documentation Status](https://github.com/USEPA/WNTR/actions/workflows/build_deploy_pages.yml/badge.svg)](https://github.com/usepa/wntr/actions/workflows/build_deploy_pages.yml)

The Water Network Tool for Resilience (WNTR) is a Python package designed to simulate and analyze resilience of water distribution networks. The software includes capability to:

  • Generate water network models

  • Modify network structure and operations

  • Add disruptive events including pipe leaks

  • Add response/repair strategies

  • Simulate pressure dependent demand and demand-driven hydraulics

  • Simulate water quality

  • Evaluate resilience

  • Visualize results

For more information, go to https://usepa.github.io/WNTR/

Installation

The latest release of WNTR can be installed from PyPI or Anaconda using one of the following commands in a command line or PowerShell prompt.

See [installation instructions](https://usepa.github.io/WNTR/installation.html) for more details.

Citing WNTR

To cite WNTR, use one of the following references:

  • Klise, K.A., Hart, D.B., Bynum, M., Hogge, J., Haxton, T., Murray, R., Burkhardt, J. (2020). Water Network Tool for Resilience (WNTR) User Manual: Version 0.2.3. U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-20/185, 82p.

  • Klise, K.A., Murray, R., Haxton, T. (2018). An overview of the Water Network Tool for Resilience (WNTR), In Proceedings of the 1st International WDSA/CCWI Joint Conference, Kingston, Ontario, Canada, July 23-25, 075, 8p.

  • Klise, K.A., Bynum, M., Moriarty, D., Murray, R. (2017). A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study, Environmental Modelling and Software, 95, 420-431, doi: 10.1016/j.envsoft.2017.06.022

License

WNTR is released under the Revised BSD license. See [LICENSE.md](https://github.com/USEPA/WNTR/blob/main/LICENSE.md) for more details.

Organization

Directories
  • wntr - Python package

  • documentation - User manual

  • examples - Examples and network files

Contact

EPA Disclaimer

The United States Environmental Protection Agency (EPA) GitHub project code is provided on an “as is” basis and the user assumes responsibility for its use. EPA has relinquished control of the information and no longer has responsibility to protect the integrity , confidentiality, or availability of the information. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply their endorsement, recommendation or favoring by EPA. The EPA seal and logo shall not be used in any manner to imply endorsement of any commercial product or activity by EPA or the United States Government.

Sandia Funding Statement

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wntr-1.2.0.tar.gz (3.2 MB view details)

Uploaded Source

Built Distributions

wntr-1.2.0-cp311-cp311-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

wntr-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

wntr-1.2.0-cp311-cp311-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

wntr-1.2.0-cp310-cp310-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

wntr-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

wntr-1.2.0-cp310-cp310-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

wntr-1.2.0-cp39-cp39-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

wntr-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

wntr-1.2.0-cp39-cp39-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

wntr-1.2.0-cp38-cp38-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

wntr-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

wntr-1.2.0-cp38-cp38-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

wntr-1.2.0-cp37-cp37m-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

wntr-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

wntr-1.2.0-cp37-cp37m-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file wntr-1.2.0.tar.gz.

File metadata

  • Download URL: wntr-1.2.0.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for wntr-1.2.0.tar.gz
Algorithm Hash digest
SHA256 05f9f491c3e2eb2f3735c108c69f1e1509cb0af9a4180ccf2ce4295e9c3ae3f2
MD5 129815357ec893b815153d040a525a62
BLAKE2b-256 190c6d47ba35ed886d64eb62527c2d37e352a318da500ba4906b462bd7f011d7

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: wntr-1.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for wntr-1.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 94478ddba63fc3eccc2ed6af244a16df761743d1fcc22d6a594d5229d2c7c5f6
MD5 d37a17a36dafb4805b83e5d7973a9426
BLAKE2b-256 b71b389d2704b829da7ce897b54883454a46099d300a9f6491b5bb3b76420294

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87240554d2cba9d731d9696c8932cfedf1991fd37bfe6c38545d6332b29cedea
MD5 26dda1172443328305c8b6900b138160
BLAKE2b-256 8dc941dde51190820b9878efea5ecd4e54d49830cf50ffb8a7cb992695ef4908

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.2.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5c3e91d1ad5605e34f8eb9a8e56ed62174aae7e6fb509f05fd2db6cbcf17cc43
MD5 ca491ffd111fe5c97a7a468a71a97b2a
BLAKE2b-256 ecc14f34d871a584ed6ec76cee92d7e6578ad6c348b98a71f593c724e31e7c0c

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: wntr-1.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for wntr-1.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 396880e740e93c0c80a233816b435dfcc6868f4e9999e7b0627870f2ab6d5207
MD5 20ec8361b02f814af0ebbb3400fa93b6
BLAKE2b-256 e9eed6ab0f4a1492c35859bee49fd8a3614a6b21415bae552c35a9bebacf5b78

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c97c7940171e132726cdc98d1cf62564c164aaf29a44c303a7f848f3a9ee4e21
MD5 6504c527ddab48a3d4a437359b1585a3
BLAKE2b-256 0db52e3315e79f2b8c597a0b3ae437a6ef86ab92ea54ac0e35d3c8d6901e0ede

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.2.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 da4efabc6f3dbb3d0eff8d1d35448ac96421a260cc1de2d29f6d71116a8b4d6c
MD5 22de688add8e1e55f92140078f5f5f56
BLAKE2b-256 c4283433e21506820be993774c585427b459e396840b4d8e30515e5462afe58d

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: wntr-1.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for wntr-1.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 298564bf78acdbefcee40b236cf4f5994af64701ff882af250f4d1fedb00647e
MD5 99cfb70e7c6fe70779d819a422f1cf0f
BLAKE2b-256 c4350ff91f32ee38817b26bf78ad3eeb0355ec7980faf1fdfe7ec6352750ca25

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7fa0eb549ec3f48f6d9bcc86306c39305d5a5e819b9ab76bc4a44677e8684082
MD5 fd781209c6599377d254ffc7b83a983b
BLAKE2b-256 88d4301b93608065f96af64b5a69f7f90c58a3381b07fca542d6078200626774

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.2.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 650beb53d8607d806810354d07ed8400affdcc15bb09733218541924028b8894
MD5 72f5c521bfcf6789c216623511481c68
BLAKE2b-256 9550601cec9b25c087845fcf888043f745bf1231f93ddd828cbb1d284988bc21

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: wntr-1.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for wntr-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2ff669606a3dbb374a5cac29954bb7046bcbb19e3b6942b7c817a8750da5ad28
MD5 fc8d81300097ad2c410f1a84bf4b11fa
BLAKE2b-256 8d036096963e5be7564451918aad9926b29adfd807dfa9f7611925f8f3f8c7a8

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec2dcbaabeb1398592f30276f574bfc0cc81737eecf4a235875bbca7edafc400
MD5 7be3f80574f37d4eed60651b39f06dd0
BLAKE2b-256 0a0592dd3b14f8df58f06578ff5f97bbfa06ed9fec29196f81ead6ca61a53f01

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.2.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8f3994e56ca1b910b5a90f002a7452f875dd9881e420300ab32a076485d59dd3
MD5 394c04c0b66c831d5b2c878200bbbc83
BLAKE2b-256 5c0685302e3b258eeb0baaeb1f504c50249c2480967f576b30e23d8a4a136fbb

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: wntr-1.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for wntr-1.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2b04facc2532e88c33b2c3c73985ae006b5bb2b2823cf40e14284741eca72dba
MD5 2db614c0c8e7935b980be9072a7dbd51
BLAKE2b-256 2666923f2cc8f8439df79a2baac7dabf0fa98abf2cea4f35d23db7fb1858aada

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 473ab9568d4aeb61d56711b7921613c34cd7c0e811c3244a84729ade6e804863
MD5 30e47ae2d93c14bf299317482d383bbe
BLAKE2b-256 df845a5d1c6ad1a5446d0371c64514ac90cdd99069ddea630d9dd9ecc4d0f918

See more details on using hashes here.

File details

Details for the file wntr-1.2.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.2.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4cf6ca8b6326d62195064ba63e5164a19fb1eb0c892bf6ed20e693ee5c42398c
MD5 784b74150db0d90c54678a52f929b29a
BLAKE2b-256 060c052fe9d091c3c3f29c6dbd2032e793c43212dd56ead364df1c1c24ba0b5f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page