Skip to main content

Tools for WoE Transformation mostly used in ScoreCard Model for credit rating

Project description

woe

https://travis-ci.org/justdoit0823/pywxclient.svg?branch=master

version: 0.1.4

Tools for WoE Transformation mostly used in ScoreCard Model for credit rating

Installation

We can simply use pip to install, as the following:

$ pip install woe

or installing from git

$ pip install git+https://github.com/boredbird/woe

Features

  • Split tree with IV criterion

  • Rich and plentiful model eval methods

  • Unified format and easy for output

  • Storage of IV tree for follow-up use

woe module function tree

|- __init__
|- config.py
|   |-- config
|       |-- __init__
|               |-- change_config_var_dtype()
|               |-- load_file()
|- eval.py
|   |-- compute_ks()
|   |-- eval_data_summary()
|   |-- eval_feature_detail()
|   |-- eval_feature_stability()
|   |-- eval_feature_summary()
|   |-- eval_model_stability()
|   |-- eval_model_summary()
|   |-- eval_segment_metrics()
|   |-- plot_ks()
|   |-- proc_cor_eval()
|   |-- proc_validation()
|   |-- wald_test()
|- feature_process.py
|   |-- binning_data_split()
|   |-- calculate_iv_split()
|   |-- calulate_iv()
|   |-- change_feature_dtype()
|   |-- check_point()
|   |-- fillna()
|   |-- format_iv_split()
|   |-- proc_woe_continuous()
|   |-- proc_woe_discrete()
|   |-- process_train_woe()
|   |-- process_woe_trans()
|   |-- search()
|   |-- woe_trans()
|- ftrl.py
|   |-- FTRL()
|   |-- LR()
|- GridSearch.py
|   |-- fit_single_lr()
|   |-- grid_search_lr_c()
|   |-- grid_search_lr_c_main()
|   |-- grid_search_lr_validation()

Examples

In the examples directory, there is a simple woe transformation program as tutorials.

Or you can write a more complex program with this woe package.

Version Records

woe 0.1.4 2018-03-01
  • support py3

woe 0.1.3 2018-02-09

  • woe.feature_process.proc_woe_discrete(): fix bug when deal with discrete varibales

  • woe.eval.eval_feature_detail(): fix bug : utf-8 output file format

  • woe.GridSearch.grid_search_lr_c_main(): add function warper for convenience and high efficiency

  • woe.GridSearch.grid_search_lr_c_validation(): monitor the ks performance of training sets and test sets on different ‘c’

  • supplement examples test scripts

woe 0.1.2 2017-12-05

  • woe.ftrl.FTRL(): add online learning module

woe 0.1.1 2017-11-28

  • woe.config.load_file(): change param data_path to be optional

  • woe.eval.eval_feature_stability(): fix bug : psi_dict[‘stability_index’] computation error

  • woe.feature_process.change_feature_dtype(): add friendly tips when encounter a error

  • woe.feature_process.calulate_iv(): refactor the code

  • woe.feature_process.calculate_iv_split(): refactor the code

  • woe.feature_process.binning_data_split(): reduce the number of len() function calls with __len__() and shape attributes;replace namedtuple with dict

  • woe.feature_process.fillna(): new added function to fill null value

  • woe.GridSearch.grid_search_lr_c(): list of regularization parameter c specified inside the function is changed to the user specified

woe 0.0.9 2017-11-21

  • Add module : GridSearch for the search of optimal hyper parametric C in LogisticRegression

  • Code refactoring: function compute_ks and plot_ks

woe 0.0.8 2017-09-28

  • More flexible: cancel conditional restriction in function feature_process.change_feature_dtype()

  • Fix bug: the wrong use of deepcopy in function feature_process.woe_trans()

woe 0.0.7 2017-09-19

  • Fix bug: eval.eval_feature_detail raises ValueError(‘arrays must all be same length’)

  • Add parameter interface: alpha specified step learning rate ,default 0.01

How to Contribute

Email me,1002937942@qq.com.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

woe-0.1.4.tar.gz (1.0 MB view hashes)

Uploaded Source

Built Distributions

woe-0.1.4-py3-none-any.whl (19.8 kB view hashes)

Uploaded Python 3

woe-0.1.4-py2-none-any.whl (19.8 kB view hashes)

Uploaded Python 2

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page