Skip to main content

Useful data crunching tools for pyarrow

Project description

Wombat

Wombat is Python libary for data crunching operations directly on the pyarrow.Table class, implemented in numpy & Cython. For convenience, function naming and behavior tries to replicates that of the Pandas API / Postgresql language.

Current features:

  • Engine API (lazy execution):
    • Operate directly on Pyarrow tables and datasets
    • Filter push-downs to optimize speed (only read subset of partitions)
    • Column tracking: only read subset of columns in data
    • Many operations (join, aggregate, filters, drop_duplicates, ...)
    • Numerical / logical operations on Column references
    • Caching based on hashed subtrees and reference counting
    • Visualize Plan using df.plot(file) (required graphviz)
  • Operation API (direct execution):
    • Data operations like joins, aggregations, filters & drop_duplicates
  • ML preprocessing API:
    • Categorical, numericals and one-hot processing directly on pa.Tables
    • Reusable: Serialize cleaners to JSON for using in inference
  • SQL API (under construction)
  • DB Management API (under construction)

Installation

Use the package manager pip to install wombat.

pip install wombat_db

Usage

See tests folder for more code examples

Dataframe API:

from wombat import Engine, head
import pyarrow.parquet as pq

# Create Engine and register_dataset/table
db = Engine(cache_memory=1e9)
db.register_dataset('skus', pq.ParquetDataset('data/skus'))
db.register_dataset('stock_current', pq.ParquetDataset('data/stock_current'))

# Selecting a table from db generates a Plan object
df = db['stock_current']

# Operations can be chained, adding nodes to the Plan
df = df.filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
    .join(db['skus'], on=['org_key', 'sku_key']) \
    .aggregate(by=['option_key'], methods={'economical': 'sum', 'technical':'max'})

# Selecting strings from the Dataframe object, yields a column reference
df['stock'] = df['economical'].coalesce(0).least(df['technical']).greatest(0)

# A column reference can be used for numerical & logical operations
df['calculated'] = ((df['stock'] - 100) ** 2 / 5000 - df['stock']).clip(None, 5000)
df['check'] = ~(df['calculated'] == 5000) and (df['stock'] > 10000)

# We can filter using the boolean column as value
df[~(df['calculated'] == 5000)]

# Register UDF (pa.array -> pa.array)
db.register_udf('power', lambda arr: pa.array(arr.to_numpy() ** 2))
df['economical ** 2'] = df.udf('power', df['economical'])

# Rename columns
df.rename({'economical': 'economical_sum', 'technical': 'technical_max'})

# Select a subselection of columns (not necessary)
df.select(['option_key', 'economical_sum', 'calculated', 'check', 'economical ** 2'])

# You do not need to catch the return for chaining of operations
df.orderby('calculated', ascending=False)

# Collect is used to execute the plan
r = df.collect(verbose=True)
head(r)

# Cache is hit when same operations are repeated
# JOIN hits cache here, as filters are propagated down
df = db['stock_current'] \
    .join(db['skus'], on=['org_key', 'sku_key']) \
    .filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
    .aggregate(by=['option_key'], methods={'economical': 'max', 'technical':'sum'}) \
    .orderby('economical', ascending=False)
r = df.collect(verbose=True)
head(r)

To Do's

  • Add unit tests using pytest
  • Add more join options (left, right, outer, full, cross)
  • Track schema in forward pass
  • Improve groupify operation for multi columns joins / groups
  • Serialize cache (to disk)
  • Serialize database (to disk)

Contributing

Pull requests are very welcome, however I believe in 80% of the utility in 20% of the code. I personally get lost reading the tranches of complicated code bases. If you would like to seriously improve this work, please let me know!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wombat_db-0.0.18.tar.gz (133.6 kB view details)

Uploaded Source

Built Distribution

wombat_db-0.0.18-cp38-cp38-macosx_10_15_x86_64.whl (332.9 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file wombat_db-0.0.18.tar.gz.

File metadata

  • Download URL: wombat_db-0.0.18.tar.gz
  • Upload date:
  • Size: 133.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/54.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.8.8

File hashes

Hashes for wombat_db-0.0.18.tar.gz
Algorithm Hash digest
SHA256 8bcd51f6e7fdeda1ce3c763c1d20e0c9c0c765b3d7817475ad81788537b32002
MD5 fff4bc8090010c023eb118a9be32a3bc
BLAKE2b-256 d32488e245a2833b96e768bfa958c0a67f6fe6496c6489adf37ea4a7cda4bd91

See more details on using hashes here.

File details

Details for the file wombat_db-0.0.18-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: wombat_db-0.0.18-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 332.9 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/54.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.8.8

File hashes

Hashes for wombat_db-0.0.18-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 06c37dca3880d257c51227610edd3a2aac3a805525196db1a117bdece66671a5
MD5 f9491cfc606af5a22b957baf9575e356
BLAKE2b-256 615f3cedea185b49f7d10752a95dca88f7e4e5a730d481a17ed91281128238c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page