Useful data crunching tools for pyarrow
Project description
Wombat
Wombat is Python libary for data crunching operations directly on the pyarrow.Table class, implemented in numpy & Cython. For convenience, function naming and behavior tries to replicates that of the Pandas API / Postgresql language.
Current features:
- Engine API (lazy execution):
- Operate directly on Pyarrow tables and datasets
- Filter push-downs to optimize speed (only read subset of partitions)
- Column tracking: only read subset of columns in data
- Many operations (join, aggregate, filters, drop_duplicates, ...)
- Numerical / logical operations on Column references
- Caching based on hashed subtrees and reference counting
- Visualize Plan using df.plot(file) (required graphviz)
- Operation API (direct execution):
- Data operations like joins, aggregations, filters & drop_duplicates
- ML preprocessing API:
- Categorical, numericals and one-hot processing directly on pa.Tables
- Reusable: Serialize cleaners to JSON for using in inference
- SQL API (under construction)
- DB Management API (under construction)
Installation
Use the package manager pip to install wombat.
pip install wombat_db
Usage
See tests folder for more code examples
Dataframe API:
from wombat import Engine, head
import pyarrow.parquet as pq
# Create Engine and register_dataset/table
db = Engine(cache_memory=1e9)
db.register_dataset('skus', pq.ParquetDataset('data/skus'))
db.register_dataset('stock_current', pq.ParquetDataset('data/stock_current'))
# Selecting a table from db generates a Plan object
df = db['stock_current']
# Operations can be chained, adding nodes to the Plan
df = df.filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
.join(db['skus'], on=['org_key', 'sku_key']) \
.aggregate(by=['option_key'], methods={'economical': 'sum', 'technical':'max'})
# Selecting strings from the Dataframe object, yields a column reference
df['stock'] = df['economical'].coalesce(0).least(df['technical']).greatest(0)
# A column reference can be used for numerical & logical operations
df['calculated'] = ((df['stock'] - 100) ** 2 / 5000 - df['stock']).clip(None, 5000)
df['check'] = ~(df['calculated'] == 5000) and (df['stock'] > 10000)
# We can filter using the boolean column as value
df[~(df['calculated'] == 5000)]
# Register UDF (pa.array -> pa.array)
db.register_udf('power', lambda arr: pa.array(arr.to_numpy() ** 2))
df['economical ** 2'] = df.udf('power', df['economical'])
# Rename columns
df.rename({'economical': 'economical_sum', 'technical': 'technical_max'})
# Select a subselection of columns (not necessary)
df.select(['option_key', 'economical_sum', 'calculated', 'check', 'economical ** 2'])
# You do not need to catch the return for chaining of operations
df.orderby('calculated', ascending=False)
# Collect is used to execute the plan
r = df.collect(verbose=True)
head(r)
# Cache is hit when same operations are repeated
# JOIN hits cache here, as filters are propagated down
df = db['stock_current'] \
.join(db['skus'], on=['org_key', 'sku_key']) \
.filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
.aggregate(by=['option_key'], methods={'economical': 'max', 'technical':'sum'}) \
.orderby('economical', ascending=False)
r = df.collect(verbose=True)
head(r)
To Do's
- Add unit tests using pytest
- Add more join options (left, right, outer, full, cross)
- Track schema in forward pass
- Improve groupify operation for multi columns joins / groups
- Serialize cache (to disk)
- Serialize database (to disk)
Contributing
Pull requests are very welcome, however I believe in 80% of the utility in 20% of the code. I personally get lost reading the tranches of complicated code bases. If you would like to seriously improve this work, please let me know!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file wombat_db-0.0.18.tar.gz
.
File metadata
- Download URL: wombat_db-0.0.18.tar.gz
- Upload date:
- Size: 133.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/54.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8bcd51f6e7fdeda1ce3c763c1d20e0c9c0c765b3d7817475ad81788537b32002 |
|
MD5 | fff4bc8090010c023eb118a9be32a3bc |
|
BLAKE2b-256 | d32488e245a2833b96e768bfa958c0a67f6fe6496c6489adf37ea4a7cda4bd91 |
File details
Details for the file wombat_db-0.0.18-cp38-cp38-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: wombat_db-0.0.18-cp38-cp38-macosx_10_15_x86_64.whl
- Upload date:
- Size: 332.9 kB
- Tags: CPython 3.8, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/54.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 06c37dca3880d257c51227610edd3a2aac3a805525196db1a117bdece66671a5 |
|
MD5 | f9491cfc606af5a22b957baf9575e356 |
|
BLAKE2b-256 | 615f3cedea185b49f7d10752a95dca88f7e4e5a730d481a17ed91281128238c2 |